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the Nonlinear Inverse Problem of Heat Transfer

Abstract. In the paper the development a method for finding the nonlinear heat-conducting 
characteristics of the soil is being presented. Two-layer container complexes have been created, the side 
faces of which are thermally insulated so that the 1D heat equation can be used. In order not to solve the 
boundary value problem with a contact discontinuity and lose the accuracy of the method’s solution, a 
temperature sensor was placed at the junction of two media, and a mixed boundary value problem is solved 
in each area (container). To provide the initial data with an inverse coefficient problem, two temperature 
sensors are used: one sensor was placed at the open boundary of the container and recorded the soil 
temperature at this boundary, and the second sensor was placed at a short distance from the boundary, 
which recorded the air temperature. The measurements were carried out on the time interval (0, tmax). First, 
the initial-boundary value problem of thermal conductivity with nonlinear coefficients of thermal 
conductivity, heat capacity, heat transfer, and material density are studied numerically. The nonlinear 
initial-boundary value problem is solved by the finite difference method. Based on the measured data of 
the complex, special functionals are constructed and the thermal conductivity coefficient 𝑘𝑘𝑘𝑘, density ρ, 
specific heat capacity 𝑐𝑐𝑐𝑐, heat transfer coefficient ℎ are found, which depend on the temperature of the 
material. Based on the experimentally measured data, the corresponding functional is minimized on each 
time interval using the gradient descent method. All thermophysical characteristics for a container with clay 
were found with a relative error of 5%.

Key words: thermal conductivity, nonlinearity, difference problem, iteration, convergence, inverse
problem.

Introduction

Heat transfer processes are one of the main 
sections of modern science and are of great practical 
importance in industrial energy. Determining the 
parameters of heat protection systems and obtaining 
a solution to the problem of thermal design are 
directly related to the calculations of thermal fields in 
the soil and ground. In turn, this requires knowledge 
of the thermophysical characteristics of the soil [1, 2]. 
The thermophysical properties of the soil play an 
essential role in the structure of the thermal field of 
the earth's crust. At the same time, the thermal field 
of the Earth is largely determined by the processes 
associated with prospecting, exploration, 
development of oil, gas and thermal water deposits, 
operation of main oil and gas pipelines and 
underground storage facilities. Optimization and 
analysis of thermal and moisture characteristics of 
building components is an important engineering tool 
[3]. In addition, studies of the thermophysical 

parameters of soil are of great importance in the gas 
industry for solving thermodynamic problems related 
to temperature forecasting when drilling deep and 
ultra-deep wells, calculating gas reserves, predicting 
the temperature of fluids at the mouth of production 
wells, assessing reservoir filtration parameters, and 
thermal treatment. productive horizons, as well as for 
transportation and underground storage of gas [4]. 
Nowadays, theoretical models for finding the 
thermophysical characteristics of inhomogeneous 
composite media do not have sufficient accuracy. 
Therefore, the main source of information about 
thermophysical properties is the performance of a 
physical experiment [5,6]. For the theoretical basis of 
the method for finding the thermophysical 
characteristics of a medium, the law of conservation 
of energy is used, the consequence of which is a 
nonlinear differential equation of heat conduction [1, 
7, 8]. Where the thermal conductivity coefficient 𝜒𝜒𝜒𝜒,
density ρ, specific heat capacity 𝑐𝑐𝑐𝑐, heat transfer 
coefficient ℎ depends on the temperature of the 

https://orcid.org/0000-0001-5167-947X
https://orcid.org/0000-0003-0579-4180
mailto:rapla.natlus@gmail.com


5B. Rysbaiuly, S.D. Alpar

International Journal of Mathematics and Physics 13, №1, 4 (2022)                                     Int. j. math. phys. (Online)

material and determine the process of heat transfer in 
the medium. Temperature is one of the main factors 
affecting the thermal conductivity of the soil. It has 
been established that the nature of the influence of 
temperature on the thermophysical parameters of the 
soil-soil is nonlinear [9-11]. In this regard, there is an 
urgent need to solve the inverse problem of the 
nonlinear heat equation.

Therefore, the purpose of the study is to conduct 
a thermophysical experiment and develop 
methodological support for determining 
thermophysical coefficients based on solving a 
nonlinear inverse problem of heat conduction [12, 
13]. On the basis of the above mathematical model, 
the direct problem of heat transfer by input 
parameters is solved. Then the temperature field in 
the medium or in the material is determined. The 
physical-mathematical model and experimental 
temperature values at the accessible soil-ground 
boundary make it possible to find thermophysical 
characteristics in inverse coefficient problems of heat 
transfer [14-16]. The difficulty here is that the 
experimental temperature data are obtained from 
unknown thermophysical characteristics, which are 
calculated in the inverse problem with a 
predetermined accuracy. In addition, it should be 
taken into account that the initial approximations of 
the thermophysical coefficients specified in the 
iterative algorithm can differ significantly (several 
times) from the true values used to measure the 
experimental temperature data. On this basis, it is 
necessary to develop such algorithms that would 
eventually give almost zero functional discrepancy 
even with a significant deviation of the initial values 
of the unknown thermophysical characteristics from 
the true ones [17]. It is also necessary to verify the 
stability of the algorithm [18-21]. In turn, in this 
study, based on the nonlinear heat equation and 
experimental data, a method for solving the inverse 
nonlinear coefficient problem is proposed. The basis 
of the method is the minimization of the quadratic 
residual functional between numerical and 
experimental temperature values. Minimization of 
the functional is carried out by the method of gradient 
descent. When determining the damping factor 
(descent step), the fastest descent method is used.

The article is organized as follows: Section 2 
presents a demonstration of a mathematical model for 
describing the physical phenomenon of heat 
conduction. The discretization of the computational 
domain and the model is also shown. Section 3 
provides a description of the experiment,

characteristics and installation of the experimental 
equipment. The soil, consisting of two layers, soil 1 
and soil 2, is in a controlled environment – a
thermally insulated container. The end faces of the 
container from the inner side are in contact with the 
soil, and the outer sides are directed to the boundary 
condition, which depends on the environment. In 
Section 4, the reliability of numerical predictions is 
assessed by comparing them with experimental 
observations. The description of the obtained results 
is given, and the graphs of the obtained data are 
shown.

Mathematical model

Formulation of the problem. Figure 1 illustrates a
two-layer container, the side faces of which are 
thermally insulated, and the end faces are in contact 
with the environment (air). Considering these 
limitations, instead of the three-dimensional heat 
equation, we can consider the one-dimensional non-
stationary equation

Figure 1 – Two-layer container

𝑐𝑐𝑐𝑐(𝑢𝑢𝑢𝑢)𝜌𝜌𝜌𝜌(𝑢𝑢𝑢𝑢)
𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�𝑘𝑘𝑘𝑘(𝑢𝑢𝑢𝑢)
𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�, 

𝜕𝜕𝜕𝜕 ∈ (0, ξ) × (ξ, 𝑙𝑙𝑙𝑙), 𝜕𝜕𝜕𝜕 ∈ (0,4tmax)

The ambient temperature at the left boundary of 
the region at 𝜕𝜕𝜕𝜕 = 0 will be denoted by 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕), and at 
the right boundary at 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙 we will denote by 
𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕). In engineering calculations, the parameters 
𝑐𝑐𝑐𝑐,  ρ and 𝑘𝑘𝑘𝑘 are usually considered to be constants. 
However, many scientists conclude that the study of 
nonlinear processes is of great practical interest. 
Since most processes occurring in nature are non-
linear. Taking into account the nonlinearity of 
equation greatly complicates the mathematical
formulation of the problem. Denote by 𝑢𝑢𝑢𝑢(𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕) –
distribution the temperature inside the complex of 
containers, where 𝜕𝜕𝜕𝜕- is the coordinate of the complex 
along the 𝑂𝑂𝑂𝑂𝜕𝜕𝜕𝜕 axis, 𝜕𝜕𝜕𝜕-is the current time. At the initial 
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time of observation, the temperature of both layers of 
the body is: 𝜕𝜕𝜕𝜕 = 0, 𝑢𝑢𝑢𝑢(𝜕𝜕𝜕𝜕, 0) = 𝑢𝑢𝑢𝑢0(𝜕𝜕𝜕𝜕), 𝜕𝜕𝜕𝜕 ∈ (0, 𝑙𝑙𝑙𝑙).

The boundary conditions that determine the 
features of the process on the wall surface are given 
as follows:

The left and right boundaries of the region Ω =
(0, ξ) × (ξ, 𝑙𝑙𝑙𝑙) are in contact with the gaseous medium 
(air), so it is advisable to formulate a boundary 
condition of the third kind on these boundaries – the 
relationship between the heat flux due to thermal 
conductivity from a solid wall and the heat flux from 
a gaseous medium. Thus, the boundary conditions on 
the left and right boundaries are written as follows:

𝜕𝜕𝜕𝜕 = 0:  k1(u)
∂u
∂x

= hins(u)�𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕)�,

𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙:  k2(u)
∂u
∂x

= −hout(u)�𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕)�,

where 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕),𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕) − are ambient temperatures; 
ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢), ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑢𝑢𝑢𝑢) − heat transfer coefficients; 
𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢), 𝑘𝑘𝑘𝑘2(𝑢𝑢𝑢𝑢) – thermal conductivity coefficients of 
the medium "1" and "2" (Figure 1).

Usually, on the contact surface of the layers 𝜕𝜕𝜕𝜕 =
ξ a boundary condition is set that determines the 
equality of temperatures and heat fluxes at the 
junction of materials:

𝑢𝑢𝑢𝑢1( ξ, t) = 𝑢𝑢𝑢𝑢2(ξ, t),
𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) ∂𝑜𝑜𝑜𝑜1

∂x
(ξ, t) = k2(𝑢𝑢𝑢𝑢) ∂𝑜𝑜𝑜𝑜2

∂x
(ξ, t).           (1)

Here 𝑢𝑢𝑢𝑢1(𝜕𝜕𝜕𝜕, t) и 𝑢𝑢𝑢𝑢2(𝜕𝜕𝜕𝜕, t) – are the temperatures of 
the material layers in contact. When solving 
problems with contact conditions of the form (1), the 
rate of convergence of a homogeneous difference 
scheme becomes very low [19]. Therefore, to avoid 
this problem, we placed a separate sensor at the point 
𝜕𝜕𝜕𝜕 = ξ which measures the change in soil temperature 
at the point of contact of two media. Due to this, the 
original task is split into two tasks, i.e. using the
measured data in each container, its own problem of 
nonlinear thermal conductivity is solved. In the 
future, we will state the problem only on the left 
container shown in Fig.1.

In addition to 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕),𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕), the initial 
temperature values Tξ(t), t ∈ [0, tmax]. For 

convenience of notation, we introduce the notation 
hins(u) = h1(u). 

Problem. Using the measured values 
𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕), Tins(t), Tξ(t), t ∈ [0, tmax], it is required to 
develop a method for finding the temperature 𝑢𝑢𝑢𝑢(𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕)
and all the thermophysical parameters of the soil.

In the region of 𝑄𝑄𝑄𝑄1 = (0, ξ) × (0, 𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) we 
studied the following system of equations.

𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢)𝜌𝜌𝜌𝜌1(𝑢𝑢𝑢𝑢)
𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢)
𝜕𝜕𝜕𝜕𝑢𝑢𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�,

u(x, 0) = u0(x),

k1(𝑢𝑢𝑢𝑢)
∂u
∂x

= h1(u)�u − uins(t)�, x = 0,

u(ξ, t) = Tξ(t).

Grid method. Section (0, ξ) is divided into 𝐼𝐼𝐼𝐼
equal parts with a step ∆x = ξ

I� . Then ξ = I∆x,
where I -is the node number of the contact point x =
ξ. And the segment (0, 𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) is divided into m equal 
parts with ∆t = tmax m� .

As a result of this action, we get a grid:

𝜔𝜔𝜔𝜔 = �𝜕𝜕𝜕𝜕𝜄𝜄𝜄𝜄 = 𝑖𝑖𝑖𝑖∆𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗∆𝜕𝜕𝜕𝜕;  𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼;  𝑗𝑗𝑗𝑗 =
= 0, 1, … ,𝑚𝑚𝑚𝑚�,

In the present work, a method has been developed 
for finding the soil parameters 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢), 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢),
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢), ℎ𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢), 𝑠𝑠𝑠𝑠 = 1,2. In this case, the measured 
values of the ambient temperature are used as initial 
information 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕),𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕) и 𝑢𝑢𝑢𝑢0(𝜕𝜕𝜕𝜕) −initial 
temperature distribution at time 𝜕𝜕𝜕𝜕 = 0. And also 
T𝜉𝜉𝜉𝜉(𝜕𝜕𝜕𝜕) − soil temperature at the contact point of two 
media 𝜕𝜕𝜕𝜕 = 𝜉𝜉𝜉𝜉. To compile the functional, 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜕𝜕𝜕𝜕),𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜕𝜕𝜕𝜕) − measured values of soil 
temperature at the boundary of the considered area 
are used.

Development of iteration methods

In the grid region 𝜔𝜔𝜔𝜔 the difference scheme is 
studied:

ρ1 �ui
j+1� ∙ c1 �ui

j+1� ui
j+1−ui

j

∆𝑜𝑜𝑜𝑜
= 1

∆x
�k1 �u

i+12

j+1� ui+1
j+1−ui

j+1

∆x
− k1 �u

i−12

j+1� ui
j+1−ui−1

j+1

∆x
�,
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i = 1,2 … , I − 1;  j = 0,1, … , m − 1;

ui0 = u0(xi), i = 0,1, … , I;                                                                (2)

uI
𝑗𝑗𝑗𝑗+1 = T𝜉𝜉𝜉𝜉�tj+1�, j = 0,1, … , m − 1;

𝑘𝑘𝑘𝑘1 �u1
2

j+1�
u1
j+1 − u0

j+1

∆x
= h1 �u0

j+1� �u0
j+1 − uins

j+1� ;

where

u
i+12

=
ui+1
j+1 + ui

j+1

2
, i = 0,1, … , I − 1.

Let’s rewrite difference equation of the system (2) in the form:

𝐹𝐹𝐹𝐹�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1� ≡ 𝑍𝑍𝑍𝑍 ⋅ �𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1� �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1� − 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢
𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1� �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑗𝑗𝑗𝑗+1�� −

−ρ�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗� = 0,

𝑖𝑖𝑖𝑖 =  1, 2, . . . , 𝐼𝐼𝐼𝐼 − 1;  𝑗𝑗𝑗𝑗 =  0, 1, . . . ,𝑚𝑚𝑚𝑚 − 1

where 𝑍𝑍𝑍𝑍 = ∆𝑜𝑜𝑜𝑜
(∆𝑚𝑚𝑚𝑚)2.

Let’s 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 = �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1,  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1�. 

When 𝑠𝑠𝑠𝑠 = 0, 𝜕𝜕𝜕𝜕 0 will be the initial approximation 
of the system (3). Then, applying the Newton method 
for system (3), the following approximation of the 
unknown grid function is obtained:

∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1

𝑖𝑖𝑖𝑖+1,𝑗𝑗𝑗𝑗+1 −  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1� + ∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖+1,𝑗𝑗𝑗𝑗+1 −  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1� + ∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑖𝑖𝑖𝑖+1,𝑗𝑗𝑗𝑗+1 −  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗+1� + 𝐹𝐹𝐹𝐹(𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖) = 0 (4)

where 𝑠𝑠𝑠𝑠 – iteration’s number for the Newton’s 
method.

Expanding the brackets, (4) is reduced to 
tridiagonal system:

𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖+1
+ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖+1

+ 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖+1
= 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,

𝑖𝑖𝑖𝑖 =  1, . . . ,𝑁𝑁𝑁𝑁 − 1;  𝑗𝑗𝑗𝑗 = 0, . . . ,𝑚𝑚𝑚𝑚 − 1,

where the coefficients are equal:

𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 = ∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1 , 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 = ∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 ,𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = ∂𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)

∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1 ,

𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −𝐹𝐹𝐹𝐹(𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖) + 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖
+

+𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖
+ 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

Then, expanding equation (3), the corresponding 
derivatives were found:

𝐹𝐹𝐹𝐹�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1� =

= �𝑘𝑘𝑘𝑘0 + 𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� + 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘3 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�

3

� ⋅⋅ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑍𝑍𝑍𝑍 −
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−�𝑘𝑘𝑘𝑘0 + 𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−12
𝑗𝑗𝑗𝑗+1� + 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘3 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−12
𝑗𝑗𝑗𝑗+1�

3

� ⋅

⋅ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑗𝑗𝑗𝑗+1�𝑍𝑍𝑍𝑍 − 𝑐𝑐𝑐𝑐�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝜌𝜌𝜌𝜌�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗� = 0,  𝑖𝑖𝑖𝑖 = 1, . . , 𝐼𝐼𝐼𝐼 − 1,

∂𝐹𝐹𝐹𝐹
∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1

𝑗𝑗𝑗𝑗+1 = 𝑍𝑍𝑍𝑍 ⋅ �
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� +

𝑘𝑘𝑘𝑘1
2
� ⋅ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� + 𝑍𝑍𝑍𝑍 ⋅ 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1�,

∂𝐹𝐹𝐹𝐹
∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1 = 𝑍𝑍𝑍𝑍 ⋅ �
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� +

𝑘𝑘𝑘𝑘1
2
� �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� −

−𝑍𝑍𝑍𝑍 ⋅ 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢
𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1� − 𝑍𝑍𝑍𝑍 ⋅ �
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−12
𝑗𝑗𝑗𝑗+1� +

𝑘𝑘𝑘𝑘1
2
� ⋅

⋅ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑗𝑗𝑗𝑗+1� − 𝑍𝑍𝑍𝑍 ⋅ 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢
𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1� −
∂𝑐𝑐𝑐𝑐

∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 ρ�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗� −

−  
∂ρ

∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 𝑐𝑐𝑐𝑐�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗� − ρ�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�,

∂𝐹𝐹𝐹𝐹
∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑗𝑗𝑗𝑗+1 = −𝑆𝑆𝑆𝑆 ⋅ �
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−12
𝑗𝑗𝑗𝑗+1� +

𝑘𝑘𝑘𝑘1
2
� �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖−1
𝑗𝑗𝑗𝑗+1� + 𝑆𝑆𝑆𝑆 ⋅ 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢

𝑖𝑖𝑖𝑖−12

𝑗𝑗𝑗𝑗+1�,

Similarly, the boundary conditions are revealed, 
considering the dependence of the thermal condu-
ctivity and heat transfer coefficient on temperature:

𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1�
𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1

∆𝜕𝜕𝜕𝜕
= ℎ�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�.

Let’s rewrite it in the form:

𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1� ≡

≡ 𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1�
𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1

∆𝜕𝜕𝜕𝜕
ℎ�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1� = 0.

To apply Newton's method, we find the 
corresponding derivatives:

∂𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1 − 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖� +
∂𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�

∂𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1 − 𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖� + 𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖� = 0.

Let's expand the derivatives in the following form:

∂𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 = 𝐷𝐷𝐷𝐷0 =
∂𝑘𝑘𝑘𝑘

∂𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 ⋅

𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1

∆𝜕𝜕𝜕𝜕
−
𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�

∆𝜕𝜕𝜕𝜕
−

∂ℎ
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1� − ℎ�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�,

where
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∂𝑘𝑘𝑘𝑘
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1   =
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 ⋅ 𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1 +
𝑘𝑘𝑘𝑘1
2

∂ℎ
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1   =  ℎ1.

∂𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�
∂𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1 = 𝐸𝐸𝐸𝐸0 =
∂𝑘𝑘𝑘𝑘

∂𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 ⋅

𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1

∆𝜕𝜕𝜕𝜕
+
𝑘𝑘𝑘𝑘 �𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�

∆𝜕𝜕𝜕𝜕
,

where

∂𝑘𝑘𝑘𝑘
∂𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1   =
3𝑘𝑘𝑘𝑘3

2
�𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
2

+ 𝑘𝑘𝑘𝑘2 ⋅ 𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1 +
𝑘𝑘𝑘𝑘1
2

.

We find the initial values for the recursive 
formula of the Thomas method:

𝐷𝐷𝐷𝐷0𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1 − 𝐷𝐷𝐷𝐷0𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖 + 𝐸𝐸𝐸𝐸0𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1 − 𝐸𝐸𝐸𝐸0𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖 +

+𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖� = 0,

𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1 =

−𝐸𝐸𝐸𝐸0𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖+1

𝐷𝐷𝐷𝐷0
+ 𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖 +
𝐸𝐸𝐸𝐸0𝑢𝑢𝑢𝑢1

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖

𝐷𝐷𝐷𝐷0
−

−
𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�

𝐷𝐷𝐷𝐷0
.

From here we get

α1 =
−𝐸𝐸𝐸𝐸0
𝐷𝐷𝐷𝐷0

,

β1 = 𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖 +

𝐸𝐸𝐸𝐸0𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖

𝐷𝐷𝐷𝐷0
−
𝐻𝐻𝐻𝐻�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1,𝑘𝑘𝑘𝑘 ,𝑢𝑢𝑢𝑢1
𝑗𝑗𝑗𝑗+1,𝑖𝑖𝑖𝑖�

𝐷𝐷𝐷𝐷0
.

Differentiation with respect to a parameter
1) In the area (0, ξ) × (0, 𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) the discrete 

problem is solved

ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� ⋅ 𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1 = �𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12

𝑗𝑗𝑗𝑗+1� 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1�

�̅�𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1,  𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1,    𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖0 = 𝑢𝑢𝑢𝑢0(𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖),  i = 0,1, … , 𝐼𝐼𝐼𝐼,                               (5)

𝑢𝑢𝑢𝑢𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 𝑇𝑇𝑇𝑇ξ�𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗+1�,   𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1

𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑢𝑢𝑢𝑢1�̅�𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 = ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�,   𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1.

We consider that the coefficient 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) is 
represented as

𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) = 𝑘𝑘𝑘𝑘10 + 𝑘𝑘𝑘𝑘11𝑢𝑢𝑢𝑢 + 𝑘𝑘𝑘𝑘12𝑢𝑢𝑢𝑢2 + 𝑘𝑘𝑘𝑘13𝑢𝑢𝑢𝑢3.

Assuming that the solution to problem (4) 
continuously depends on 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢)) and has a derivative 
with respect to 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢), we differentiate system (4) 
with respect to the parameter

𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢),  𝑠𝑠𝑠𝑠 = 0,1,2,3

Let’s denote 

∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1

∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖
= 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼,

 𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1, 𝑠𝑠𝑠𝑠  =  0,1,2,3
Then
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∂ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖
= ρ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠),

∂𝑐𝑐𝑐𝑐�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖
= 𝑐𝑐𝑐𝑐1′�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠),

∂𝑘𝑘𝑘𝑘1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖
= �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

+ 𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠),

∂ℎ1�𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�

∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖
= ℎ1′ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1� 𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠).

After differentiating system (4) with respect to 
𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠  =  0,1,2,3, various problems follow 
depending on s. These tasks can be written in a single 
form as follows

[𝑐𝑐𝑐𝑐1′�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1� + ρ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�] 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅

𝑗𝑗𝑗𝑗+1 + 𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) =

= �𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)�
�̅�𝑚𝑚𝑚

+ ���𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

+ 𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,�̅�𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1�

�̅�𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1,   = 0,1, … ,𝑚𝑚𝑚𝑚 − 1,

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖0 = 0,  𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼,  𝑢𝑢𝑢𝑢𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 0,  𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1,

𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦1,𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + ��𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

+ 𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1�
𝑦𝑦𝑦𝑦1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢1�̅�𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 =

= ℎ1′ �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� + ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑗𝑗𝑗𝑗 = 0,1, … ,𝑚𝑚𝑚𝑚 − 1.

The values of the coefficients 𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠  =  0,1,2,3of 
the coefficient of thermal conductivity of soil 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢)
will be found from the condition of the minimum of 
the functional

𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢)� = ��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑘𝑘𝑘𝑘1) − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

Direct differentiation of the last equality with 
respect to 𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠 = 0,1,2,3 gives us the gradient of the 
composed functional written as

∇𝐽𝐽𝐽𝐽(𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖) =

= 2 ��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑘𝑘𝑘𝑘1) − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)Δ𝜕𝜕𝜕𝜕

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

,

𝑠𝑠𝑠𝑠 = 0,1,2,3.                               (6)

Then

𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢)� = �𝐽𝐽𝐽𝐽(𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖)
3

𝑖𝑖𝑖𝑖=0

Knowing the explicit expression for the gradient 
of the functional, the parameters of the functions
𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) are defined as follows

𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1) = 𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛) + μ1(𝑠𝑠𝑠𝑠)∇𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)�,   =

= 0,1,2,3.
To determine the damping factor μ1(𝑠𝑠𝑠𝑠) of the 

functional

𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1)� =

= ��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1)� − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

.

Minimize by parameter μ1(𝑠𝑠𝑠𝑠). For this we use the 
expansion

𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1)� =

= 𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� + μ1(𝑠𝑠𝑠𝑠)∇𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� =

= 𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� +
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+
∂𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)�
∂𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖

μ1(𝑠𝑠𝑠𝑠)∇𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� + 𝑜𝑜𝑜𝑜�μ1(𝑠𝑠𝑠𝑠)�2.

Using this expansion from (6) after some 
transformations, we obtain the parameter of the 
fastest descent in the form:

μ1(𝑠𝑠𝑠𝑠) =

= −
∑ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)Δ𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0

∑ �𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1�

2
Δ𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0 ∇𝐽𝐽𝐽𝐽�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)�
,

𝑠𝑠𝑠𝑠 = 0,1,2,3.                            (7)

Using (7), we write out the final calculation 
formula for each coefficient of the function 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) in 
the following form

𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1) = 𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛) −

−
∑ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)Δ𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=0

∑ �𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1�

2
Δ𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=0

,

𝑠𝑠𝑠𝑠 = 0,1,2,3.

2) To determine the specific heat coefficient 
𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢) we represent it as

𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢) = 𝑐𝑐𝑐𝑐10 + 𝑐𝑐𝑐𝑐11𝑢𝑢𝑢𝑢.

This is the most commonly used dependence in 
practice [1].

Now the discrete problem is composed in the 
region (0, ξ) × (𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 2𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and has the form

ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� ⋅  𝑐𝑐𝑐𝑐1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1� 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1  =

=   �𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗+1�
�̅�𝑚𝑚𝑚

,

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1, 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1,

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 𝑢𝑢𝑢𝑢0(𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖) – solution of problem (5) for 𝑗𝑗𝑗𝑗 =
𝑚𝑚𝑚𝑚 − 1, 𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼,

𝑢𝑢𝑢𝑢𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 𝑇𝑇𝑇𝑇ξ�𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗+1�,  𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1, (8)

𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑢𝑢𝑢𝑢1�̅�𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 = ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�,  

 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1.

In this case, all the coefficients of the functions 
ρ1(𝑢𝑢𝑢𝑢),  𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) and ℎ1(𝑢𝑢𝑢𝑢) are taken from the current 
iteration level, and the coefficients of the function
𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢) are changed, calculating the minimum of the 
functional

𝐽𝐽𝐽𝐽�𝑐𝑐𝑐𝑐 + 1(𝑢𝑢𝑢𝑢)� = � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑐𝑐𝑐𝑐1) − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

2𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

=

= 𝐽𝐽𝐽𝐽�𝑐𝑐𝑐𝑐10(𝑢𝑢𝑢𝑢)� + 𝐽𝐽𝐽𝐽�𝑐𝑐𝑐𝑐11(𝑢𝑢𝑢𝑢)� =

= � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑐𝑐𝑐𝑐10) − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

2𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

+

+ � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1(𝑐𝑐𝑐𝑐11) − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

2𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

.

Assuming the continuous dependence of the 
solution of the problem 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1 on the parameters 𝑐𝑐𝑐𝑐10
and 𝑐𝑐𝑐𝑐11, and, assuming the existence of a derivative 
of the function 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1 with respect to the named 
parameters, we differentiate (8) with respect to
𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖,  𝑠𝑠𝑠𝑠 = 0,1.

As early as we introduce the notation

∂𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1

∂𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖
= 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼, 

𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1,  𝑠𝑠𝑠𝑠 = 0,1.

And given that

∂𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

∂𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖
= �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

+ 𝑐𝑐𝑐𝑐1′�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑠𝑠𝑠𝑠 = 0,1.

We compose a system with respect to the 
unknowns 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) in the following form
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��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖
+ 𝑐𝑐𝑐𝑐1′�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)� ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1 + ρ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1 +

+𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) =

= �𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)�
�̅�𝑚𝑚𝑚

+ ��𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1�

�̅�𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1, 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1,
 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 0,  𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼,𝑦𝑦𝑦𝑦𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 0, 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1, 

𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦1,�̅�𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + �𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
𝑦𝑦𝑦𝑦1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢1�̅�𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 =

= ℎ1′ �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� + ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,2𝑚𝑚𝑚𝑚 − 1.

Here 𝑠𝑠𝑠𝑠 = 0,1.
Repeating all the calculations done when 

deriving the calculation formula 𝑘𝑘𝑘𝑘1𝑖𝑖𝑖𝑖, we derive the 
calculation formula for 𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖 in the following form

𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1) = 𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛) −

−
∑ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)Δ𝜕𝜕𝜕𝜕2𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

∑ �𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)�

2
Δ𝜕𝜕𝜕𝜕2𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

, 

𝑠𝑠𝑠𝑠 = 0,1

The corresponding functional has the form

𝐽𝐽𝐽𝐽�с1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� = � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

2𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=𝑚𝑚𝑚𝑚

, 

𝑠𝑠𝑠𝑠 = 0,1.

3) Assuming the dependence of the specific 
density ρ1(𝑢𝑢𝑢𝑢) in the form

ρ1(𝑢𝑢𝑢𝑢) =  ρ10 + ρ11𝑢𝑢𝑢𝑢

and given that ∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1

∂ρ1𝑠𝑠𝑠𝑠
= 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), we compose the 
corresponding discrete problem. This time in the area
(0, ξ) × (2𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 3𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) in the form

��𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖
+ ρ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)� с1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1 + с1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1 +

+𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) =

= �𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)�
�̅�𝑚𝑚𝑚

+ �𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1�

�̅�𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1, 𝑗𝑗𝑗𝑗 = 2𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,3𝑚𝑚𝑚𝑚 − 1, 𝑠𝑠𝑠𝑠 =  0,1,

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖2𝑚𝑚𝑚𝑚 = 0, 𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼;𝑦𝑦𝑦𝑦𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 0,  𝑗𝑗𝑗𝑗 = 2𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,3𝑚𝑚𝑚𝑚 − 1
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𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦1,�̅�𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + �𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
𝑦𝑦𝑦𝑦1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢1�̅�𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 =

= ℎ1′ �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1��𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� + ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠),  𝑗𝑗𝑗𝑗 = 2𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,3𝑚𝑚𝑚𝑚 − 1.

Here 𝑠𝑠𝑠𝑠 = 0,1.
In this case, to calculate the coefficients ρ1(𝑢𝑢𝑢𝑢) ,

the formula is derived

ρ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1) = ρ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛) −

−
∑ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�ρ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)Δ𝜕𝜕𝜕𝜕3𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=2𝑚𝑚𝑚𝑚

∑ �𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)�

2
Δ𝜕𝜕𝜕𝜕3𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=2𝑚𝑚𝑚𝑚

, 

𝑠𝑠𝑠𝑠 = 0,1.
Functional is minimized

𝐽𝐽𝐽𝐽�ρ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� = � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�ρ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

3𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=2𝑚𝑚𝑚𝑚

, 

𝑠𝑠𝑠𝑠 = 0,1.

4) Calculation of the heat transfer coefficient
ℎ1(𝑢𝑢𝑢𝑢).

In practical calculations, power-law dependences 
of the heat transfer coefficient on the soil temperature 
on the contact surface of two media are usually used. 
We'll look at the dependency:

ℎ1(𝑢𝑢𝑢𝑢) = ℎ10 + ℎ11𝑢𝑢𝑢𝑢

Then

∂ℎ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�

∂ℎ1𝑖𝑖𝑖𝑖
= �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�
𝑖𝑖𝑖𝑖

+ ℎ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 

𝑠𝑠𝑠𝑠 = 0,1,

here ∂𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1

∂ℎ1𝑠𝑠𝑠𝑠
= 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠), 𝑖𝑖𝑖𝑖 = 1,2, … , 𝐼𝐼𝐼𝐼 − 1, 𝑗𝑗𝑗𝑗 =
3𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,4𝑚𝑚𝑚𝑚 − 1, 𝑠𝑠𝑠𝑠 = 0,1.

In this case, the problem is considered in the area 
(0, ξ) × (3𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 4𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and the next function 
coefficients are taken from the current iteration level:

ρ1(𝑢𝑢𝑢𝑢),  𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢) и 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢).

After skipping the difference scheme in the next 
grid domain

𝜔𝜔𝜔𝜔14 = �𝜕𝜕𝜕𝜕𝜄𝜄𝜄𝜄 = 𝑖𝑖𝑖𝑖∆𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗∆𝜕𝜕𝜕𝜕;  𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼;  𝑗𝑗𝑗𝑗
= 3𝑚𝑚𝑚𝑚, … ,4𝑚𝑚𝑚𝑚 − 1�,

Let us immediately write out the difference 
problem for the function 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1. The difference 
scheme has the form

ρ1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅

𝑗𝑗𝑗𝑗+1 + 𝑐𝑐𝑐𝑐1′�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅

𝑗𝑗𝑗𝑗+1 + 𝑐𝑐𝑐𝑐1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1�ρ1�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜̅
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) =

�𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)�
�̅�𝑚𝑚𝑚

+ �𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+12
𝑗𝑗𝑗𝑗+1�

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖+1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1�

�̅�𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 = 1,2 … , 𝐼𝐼𝐼𝐼 − 1;  𝑗𝑗𝑗𝑗 = 3𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,4𝑚𝑚𝑚𝑚 − 1;  𝑠𝑠𝑠𝑠 = 0,1,

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖3𝑚𝑚𝑚𝑚 = 0, 𝑖𝑖𝑖𝑖 = 0,1, … , 𝐼𝐼𝐼𝐼;𝑦𝑦𝑦𝑦𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗+1 = 0, 𝑗𝑗𝑗𝑗 = 3𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,4𝑚𝑚𝑚𝑚 − 1,

𝑘𝑘𝑘𝑘1 �𝑢𝑢𝑢𝑢1
2

𝑗𝑗𝑗𝑗+1� 𝑦𝑦𝑦𝑦1,�̅�𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + �𝑘𝑘𝑘𝑘1′ �𝑢𝑢𝑢𝑢1

2

𝑗𝑗𝑗𝑗+1�
𝑦𝑦𝑦𝑦1
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠) + 𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)
2

�𝑢𝑢𝑢𝑢1�̅�𝑚𝑚𝑚
𝑗𝑗𝑗𝑗+1 =

= ��𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�

𝑖𝑖𝑖𝑖
+ ℎ1′ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠)� �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗+1� + ℎ1�𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠),

𝑗𝑗𝑗𝑗 = 3𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 + 1, … ,4𝑚𝑚𝑚𝑚 − 1.
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Here 𝑠𝑠𝑠𝑠 = 0,1.

In this case, by controlling the parameters 
ℎ1𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠 = 0,1 , the functional is minimized

𝐽𝐽𝐽𝐽�ℎ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� = � �𝑢𝑢𝑢𝑢0
𝑗𝑗𝑗𝑗+1�ℎ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0

𝑗𝑗𝑗𝑗+1�
2
Δ𝜕𝜕𝜕𝜕

4𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=3𝑚𝑚𝑚𝑚

, 

𝑠𝑠𝑠𝑠 = 0,1.

And the control parameters of optimization 
processes are determined by the formula

ℎ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛 + 1) = ℎ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛) −

−
∑ �𝑢𝑢𝑢𝑢0

𝑗𝑗𝑗𝑗+1�ℎ1𝑖𝑖𝑖𝑖(𝑛𝑛𝑛𝑛)� − 𝑇𝑇𝑇𝑇0
𝑗𝑗𝑗𝑗+1�𝑦𝑦𝑦𝑦0

𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)Δ𝜕𝜕𝜕𝜕4𝑚𝑚𝑚𝑚−1
𝑗𝑗𝑗𝑗=3𝑚𝑚𝑚𝑚

∑ �𝑦𝑦𝑦𝑦0
𝑗𝑗𝑗𝑗+1(𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛)�

2
Δ𝜕𝜕𝜕𝜕4𝑚𝑚𝑚𝑚−1

𝑗𝑗𝑗𝑗=3𝑚𝑚𝑚𝑚

,

𝑠𝑠𝑠𝑠 = 0,1.

Comment. Everywhere we have assumed that the 
parameters ρ1(𝑢𝑢𝑢𝑢), 𝑐𝑐𝑐𝑐1(𝑢𝑢𝑢𝑢), 𝑘𝑘𝑘𝑘1(𝑢𝑢𝑢𝑢) 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 ℎ1(𝑢𝑢𝑢𝑢) depend 
on 𝑢𝑢𝑢𝑢 in the form of a polynomial. However, the 
considered method is applicable in another form of 
dependence on 𝑢𝑢𝑢𝑢.

Experimental setup

Figure 2 – Сontainers with soil

Containers with sensors were built for the 
experiment. Photos of containers are shown in Fig. 2. The 
side faces of the containers are made of 2 cm thermally 
insulated material, and the end faces are in contact with 
the environment (air). In each compartment of the 
container, 15 cm long, there are various soils. One end 
side is heated with lamps. The second outer side is 
affected by the ambient temperature.

3 sensors (C2, C3, C4) are evenly distributed inside 
the material as shown in Figure 1. They measure 
temperature with an error of 0.3 degrees Celsius 
according to the technical data sheet of the sensor. In 
addition to these sensors, there are 2 more sensors (C1, 
C5) close to the ends to measure the ambient 
temperature. The errors of these sensors are the same as 
those of the previous sensors. The temperature data 
measurement is taken at intervals of 10 minutes.

For calculations, a two-chamber container was 
considered and, accordingly, with two materials: 

sand and black soil. The data were measured over a 
period of three months, and the physical length of the 
entire container is determined through the interval 
𝜕𝜕𝜕𝜕 ∈ (0, 𝑙𝑙𝑙𝑙), where 𝑙𝑙𝑙𝑙 = 30 cm. The boundary of the 
two media is at a distance of 𝜕𝜕𝜕𝜕 = 15 cm and the 
temperature measurement sensor is also located 
there. Since there is an exchange with the 
environment at the end boundaries, Robin boundary 
conditions were considered for the numerical 
solution. Measurements at points 𝜕𝜕𝜕𝜕 = 0 см. and 𝜕𝜕𝜕𝜕 =
30 cm determine the temperature at the end 
boundaries. The temperature values of the measured 
data can be seen in Fig. 3.

It should be noted that enough time has passed to 
conduct numerical experiments (about 3 months) 
from the installation of measuring instruments and 
the data used in the proposed article. Also, for the 
initial condition, the interpolation of the measured 
data was taken.



15B. Rysbaiuly, S.D. Alpar

International Journal of Mathematics and Physics 13, №1, 4 (2022)                                     Int. j. math. phys. (Online)

Figure 3 – Сontainers with soil

Results

The measured temperature data were used to 
solve a numerical problem to find all thermophysical
coefficients (thermal conductivity coefficient, 
specific heat capacity, specific density and heat 
transfer coefficient). Thanks to the steepest descent 
method, the functionals converge fairly quickly and 
reach a minimum in 6 and 7 iterations. The 
minimization of the functional continued until the 
relative error between the nonlinear solution and the 
experimental data reached ~4.3% for chernozem and 
~3.12% for sand, which in turn shows a fairly good 
accuracy of the solution. If we look at the absolute 
errors in two environments – ~6.3% and ~5.3%, we
see that they also meet our expectations.

In addition, the values of the coefficients at 
the contact boundary of two media were 

considered. Figure 4 illustrates the values of 
thermal conductivity, density, specific heat 
capacity and volumetric heat capacity from the 
left approximation (sand) and the right 
approximation (soil) to the boundary. As can be 
seen from the graph, the values of the coefficients 
at the contact discontinuity differ significantly 
from each other, but in the case of the volumetric 
heat capacity coefficient, the values at many 
points coincide at the boundary of two media, 
which can prove a continuous volumetric heat 
capacity at the boundary of two different media. 
This statement needs further research on other 
materials. The large difference at the initial 
points in time is associated with a rough 
initial approximation of the iterative process 
for the parameters of thermophysical 
coefficients.
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Figure 4 – The distribution of a) thermal conductivity b) density c) specific and 
d) volumetric heat capacity at the boundary of two materials.

Figure 5 – Distribution of thermal conductivity and density along 
the container during 𝜕𝜕𝜕𝜕1 =  2.5/𝑎𝑎𝑎𝑎, 𝜕𝜕𝜕𝜕2 =  5/𝑎𝑎𝑎𝑎, 𝜕𝜕𝜕𝜕3 =  7.5/𝑎𝑎𝑎𝑎, 𝜕𝜕𝜕𝜕4 =  10/𝑎𝑎𝑎𝑎.
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Fig.4 and Fig.5 illustrate the values of 
thermophysical coefficients along the container. The 
graphs clearly show jumps-discontinuities in the 
values of thermophysical coefficients at the contact 
boundary of contact between two media, except for 
the coefficient of volumetric heat capacity. From here 
it can also be said that the volumetric heat capacity 
shows a continuous nature of the values.

Conclusion

In the context of predicting and finding all 
thermophysical coefficients (thermal conductivity, 
heat capacity, density and heat transfer), this article 
proposes an efficient numerical method. In contrast 
to the methods previously proposed in the literature, 
this approach allows one-time determination of all 
thermophysical coefficients in two media with a 
contact boundary. This approach takes into account 
the impossibility of finding several coefficients in 
one time interval. To solve this problem, the entire 
measured data time is divided into segments equal to 
the number of coefficients, and the corresponding 
coefficient is calculated in each segment. In addition, 
one should not forget that a solution of the nonlinear 
heat equation is proposed with the heat conductivity 
coefficient, which is a cubic function, and with the 
heat capacity, density, and heat transfer coefficients, 
which are linear functions. The system of nonlinear 
equations is solved by Newton's method, which 
ensures high convergence of the solution. The initial 
approximation for Newton's method is taken from the 
solution of a linearized difference problem. Also the 
next approximation for Newton's method, i.e. for a 
nonlinear difference problem, is found using the 
Thomas method (sweep), which in turn is 
unconditionally stable. Finding the thermophysical 
coefficients is calculated by minimizing the 
corresponding functional using the steepest descent 
method. Using the differentiation of a nonlinear 
difference problem with respect to the desired 
parameter, the gradient of the functional and the 
damping coefficient are found in explicit form. With 
the help of this, the elimination of the solution of the 
adjoint problem for the solution of inverse problems 
is achieved. A proof of the quadratic convergence of 
the iterative scheme for Newton's method is also 
proposed.

In conclusion, it can be said that research in the 
field of coefficient inverse problems for non-linear 
equations should be advanced with detailed 

experimental measurements, including, for example, 
moisture, freezing, porosity, etc.
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