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Starobinsky model with a viscous fluid

Abstract. The article considers some cosmological solutions of the Starobinsky model for a flat 
inhomogeneous viscous Universe. The first section contains a brief of the )(RF theory of gravity. One 
of the most common examples of )(RF gravity with a high degree of curvature is the Starobinsky 

model. For the Starobinsky 2=)( RRRF βα + model, the cosmological model of a flat and 
homogeneous Universe is considered. For the Friedmann-Robertson-Walker metric, the Lagrange 
function is defined, and the corresponding equations are determined by the Euler-Lagrange equations and 
the Hamilton energy condition. Using the equation of state for inhomogeneous viscous fluid, we 
considered two cases of the viscosity parameter when the state parameter is constant. Next, using the 
results obtained, we determined the dynamics of the Hubble parameter H . At constant viscosity, 

0ξξ = has a negative value of the Hubble parameter and decreases with time along a hyperbola, while 
H3=ξ has a positive value decreases along a hyperbola.

If we compare it with the well-known de Sitter solution describing the accelerated expansion of the 
Universe and take into account that time in physics should only be positive, then the change in the Hubble 
parameter for the viscosity H3=ξ occurs later. An analysis of this solution shows that at a certain
point in time the acceleration of the Universe turns into a process of instantaneous compression. 
However, at the end, the result is similar to the de Sitter solution tends to zero, i.e. the Universe stops 
accelerating. Based on the results obtained, a graph was constructed with respect to the de Sitter solution. 
The analysis was carried out according to the graph. These results are useful for describing the 
accelerated expansion of the modern Universe and do not contradict modern astronomical observations.

Key words: viscous fluid, cosmology, Starobinsky model, FRW metric, )(RF gravity.

Introduction

The general theory of relativity is the basic 
theory describing gravitational phenomena in 
nature. The correctness of this theory is confirmed 
by various experiments and observations. However, 
the general theory of relativity does not fully 
describe some aspects of the evolution of the 
Universe, for example, the current accelerated 
expansion of the Universe [1, 2]. The best theory to 
explain this expansion of the Universe is dark 
energy [3-5], but the nature of dark energy is still 
unknown.

The latest cosmological data limit the state 
parameter ω of dark energy to ω = -0.972 + 0.061 
-0.060 so that various forms of dark fluid (phantom, 
quintessence, inhomogeneous fluids, etc.) can 
satisfy the corresponding equation of state. The 
study of non-ideal fluids in the 
Friedman-Robertson-Walker (FRW) universe can be 
justified by various arguments. First of all, even 
though many macroscopic physical systems, such as 
the large-scale structure of baryonic matter and 
radiation in the Universe, can be approximated as 
ideal fluids (with the equation of state p = ωρ, ω is 
constant), the description of dark energy does not 
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exclude a more complex equation of state, since its 
nature is still unknown.

Moreover, interest in modified theories of 
gravity has increased in recent years. Such theories 
suggest changing not only the nature of dark energy, 
but also a different approach to Einstein's spacetime 
or gravity by replacing the curvature of spacetime in 
the classical Hilbert-Einstein formula with more 
generalized variants (Riemann tensor, Weyl tensor, 
Ricci tensor, etc.). One of the most common 
examples of modified gravity is the model 
Starobinsky. Various applications of Starobinsky 
models in cosmology are presented in the literature 
[17].

In this paper, we study the dynamics of a 
viscous fluid [18-20] in the Starobin gravitational 
field. The corresponding equations of motion are 
determined and the evolution of the Hubble 
parameter for two types of viscous fluids is 
obtained. Moreover, the results obtained are 
compared with de Sitter's solution and allow us to 
describe the late evolution of the universe.

It should be noted that we fully adopt the natural 
system of units by taking 8πG=c=h=1. Indices i,j,l 
run from 1 to 4 throughout this paper. 

Action and equations of motion

In this section, we consider the Starobinsky 
model for FRW metric. In the general case, the 
action )(RF gravity can be written as follows

,)(
2
1= 4 






 +−∫ mLRF

k
gxdS       (1)
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c

Gk π
, g is the determinant of the 

metric tensor µνg , )(RF is some function of the 

Ricci scalar R , mL is the Lagrangian matter. The 
dependence of the function )(RF on the Ricci 
scalar is given in this paper similarly to the 
Starobinsky model 2=)( RRRF βα + , where 
α , const=β .

Then consider the FRW metric with action (1)

( ),)(= 222222 dzdydxtadtds +++− (2)

where )(ta is a scale factor that depends only on 
time t . For this metric, we obtain the following 
equations
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where the dot denotes the differentiation in time t .
Therefore, for metric (2) action (1) can be 

rewritten as follows
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If we take a variation of this action with respect 
to R , we can determine the Lagrange multiplier λ

.2
d

)(d= R
R
RF βαλ +=

Thus, we can write the point-like Lagrangian as 
follows

( ) .2612= 2232 aaRRaaaRL 
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Using the Euler-Lagrange equation, we find the 
pressure for the considered model as follows
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Using the energy condition, we define our 
energy density as follows
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where 
a
aH


= is the Hubble parameter.

If we equate equations (5) and (6), we obtain the 
following equation
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Model of inhomogeneous viscous fluid

The pressure p introduced into the Friedmann 
equations and the energy density ρ must satisfy 
the following conservation law

( ) .03 =++ pH ρρ          (8)

For our model, we study the general form of the 
equation of state for an inhomogeneous viscous 
fluid [17-20]

( ) ( )( ),,...,, HHtaBp −= ρρω       (9)

where ( )ρω parameter of the equation of state can 
depend on the energy density, and the mass 
viscosity ( )( ),...,, HHtaB  is a function of its 
arguments. Consider ( )( ) )(,...,, HHHtaB ξ= for 
a viscous fluid

( ) ( ),3 HHp ξρω −=          (10)

thus, )(Hξ – is the bulk viscosity.
Thus, if we substitute the pressure in equation 

(5) to the law of conservation of energy (6), we will 
obtain an additional equation of motion describing a 
viscous fluid. As a result, we obtain a system of 
equations of motion

( )( ) ),(313 НHH ξρωρρ =++      (11)
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Now consider two cases related to these given 
equations of motion. Let's transform these received 
formulas.

Cosmological solution

For thermodynamic reasons )(Hξ is usually 
chosen to be positive. Therefore, various forms of 
viscosity can be used to numerically or accurately 
solve the Hubble parameter. Next, consider two 
types of viscosity parameter )(Hξ .

First case: const=ω , constH =)(ξ
In this case, for constH == 0)( ξξ , we obtain 

the following equation using equations (11)-(14)

( ) ,31
2
3

0
2 HHH ξω ++−=       (15)

as a result, we get the following solution
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If we consider 1−=ω and the early Universe 
for vacuum, then the time 00 ≅t , i.e.

,
2
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Having determined the dependence of the scalar 
curvature on time, substituting this solution (13) and 
solving equation (7) 1=α , 1,1 0 == ξβ , we 
determine the Hubble parameter for the Starobinsky 
model

( )( )
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Second case: const=ω , H3=ξ
Consider the case where the equation of state 

parameter for vacuum is 1−=ω and the bulk vis-
cosity depends only on the Hubble parameter, then

( )( ) .23
2

0tt
H

−−
=

ω
          (19)

After some actions, analogous to the previous 
case, we define the Hubble parameter for the 
Starobinsky model
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              (20)

a. b.
               

Figure 1 – Hubble parameter dynamics for cases: а. , b.

Figure 2 – Dynamics of the Hubble parameter for different solutions
for indicated by a blue line, for red line.
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Conclusion

Thus, in this work, we have considered some 
cosmological solutions of the Starobinsky model for 
the flat and homogeneous Universe. In the first 
section we give a brief introduction to the theory of 
gravitation. For the FRW metric, the Lagrange 
function is defined, and the corresponding equations 
of motion are determined using the Euler-Lagrange 
equations and the Hamilton energy condition. As 
you can see, these equations are non-linear 
differential equations of high order, the solution of 
which is a difficult task. Next, using this result, we 
determined the Hubble parameter H and the 
equation of motion R .

Finally, as you can see in Fig. 2, the Hubble 
parameter is negative for the 0ξξ = condition 
and decreases with time along the hyperbola, while 
in the H3=ξ state it decreases to a positive value 
along the hyperbola. If we compare with the 
well-known de Sitter solution describing accelerated 
expansion that time is only positive according to the 
law of physics, then in the case of H3=ξ the 
Hubble change occurs later than the de Sitter 
solution, and the viscosity is 0ξξ ≠ variable. If we 
analyze the solution for a viscosity proportional to 
the Hubble parameter, then at a certain moment in 
time the acceleration of the Universe passes into the 
process of instantaneous compression. But as a 
result, the de Sitter solution seems to be infinitely 
close to zero, that is, the Universe stops 
accelerating.
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