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Control of Vibrations of a Beam with Nonlocal Boundary Conditions 

Abstract. In this article is considered the models of uniform Euler-Bernoulli beams with an arbitrary variable 
coefficient of foundation on a finite segment. The variable of foundation corresponds to the Winkler model. The control 
problem the first eigenvalues of the beam vibration is investigated. Two types of fastenings at the ends are considered: 
clamped-clamped and hinged-hinged. The control is based on the Kanguzhin algorithm through integral perturbations 
of one of the boundary conditions of the original problem. Conditions for the boundary parameters for controlling the 
first eigenvalues are found. First, a result is formulated regarding the control of the first eigenvalue of the oscillation 
of the Euler-Bernoulli beam with hinge fastening at both ends. The result is then extended to control with several 
eigenvalues for this beam, which are important from the point of view of the application. Such questions are especially 
relevant when studying the resonant natural frequencies of a mechanical system. A similar result was obtained for a 
Euler-Bernoulli beam with clamped fastening at both ends. Such results of eigenvalue control of a mechanical system 
contribute to the creation of various non-destructive testing devices that are widely used in technical acoustics.
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Introduction

Oscillations of mechanical systems are described 
by a differential equation and initial-boundary 
conditions. The differential equation contains 
information about the qualitative properties of the 
object under consideration, such as the physical 
properties of the material, the basic laws of vibration, 
according to which the vibration occurs. Initial-
boundary conditions describe the behavior at the 
initial moment of time and the state at the boundaries 
of the object under study. Depending on the 
mechanical problems, different questions arise in the 
control of the vibrations of mechanical systems. 
Questions of the isospectral problem may arise, 
which require the coincidence of the spectrum of 
different two problems [1, 2]. In such problems, the 
goal is achieved mainly through additional conditions 
on the physical parameters of the object, for example, 
in [1], conditions on the density were found. Also, 
questions arise on the extreme properties of the 
eigenvalues and the question of the behavior of the 
eigenvalues during the destruction or defects of 
systems [3, 4]. In such tasks, lumped elements at 
internal points and features of the geometric 
structures of an object play an important role. In [5, 
6], the question was investigated whether it is 

possible to change the spectrum of the boundary 
value problem to a predetermined one by changing 
only one of the boundary conditions. In such 
problems, it is important to take into account the 
dependence of the boundary conditions on the 
spectral parameter and the singularity of the original 
problem as the coincidence of the spectrum with the 
entire complex plane. Along with the above 
questions, problems of control of some eigenvalues 
also arise [7-10]. In such problems, one of the 
important methods is the integral perturbation of the 
original problem. Basis properties and the question of 
the asymptotic behavior of the eigenvalues for 
differential operators with integral perturbations for 
an arbitrary order were considered in [11, 12], and for 
the second order in [13-17]. Similar questions arise 
in the problems of aeroelasticity [18, P. 291] and 
MEMS resonators [19, Ch. 1].

In this paper, we investigate the problem of 
controlling the first eigenvalues of the Euler-Bernoulli 
beam vibration with hinged and clamped fixings at both 
ends, see Fig. 1. Control is achieved due to integral 
perturbations of the boundary conditions of the original 
problem. The research methods of this work are 
conceptually close to the methods of work [9, 10].
Conditions on the boundary parameters for controlling 
the first eigenvalues are found (see Theorems 1, 2, 3).

https://doi.org/10.26577/ijmph.2021.v12.i2.0
https://orcid.org/0000-0003-2358-9092
https://orcid.org/0000-0003-1803-5458
https://orcid.org/0000-0003-4786-1556
mailto:aniyarov@math.kz


46 Control of vibrations of a beam with nonlocal boundary conditions 

Int. j. math. phys. (Online)                                   International Journal of Mathematics and Physics 12, №2, 45 (2021)

                                            a) clamped-clamped           b) hinged-hinged

Figure 1 – Euler-Bernoulli beams with two types of anchorage

Problem statement and main results

Let 𝑘𝑘𝑘𝑘(𝑥𝑥𝑥𝑥), 𝑥𝑥𝑥𝑥 ∈ (0; 𝑙𝑙𝑙𝑙) be a real-valued summable 
symmetric function with respect to the point 𝑥𝑥𝑥𝑥 = 𝑙𝑙𝑙𝑙

2
,

i.e. 𝑘𝑘𝑘𝑘(𝑥𝑥𝑥𝑥) = 𝑘𝑘𝑘𝑘(𝑙𝑙𝑙𝑙 − 𝑥𝑥𝑥𝑥), 𝑥𝑥𝑥𝑥 ∈ �0; 𝑙𝑙𝑙𝑙
2
�. In the sequel, 𝑘𝑘𝑘𝑘(𝑥𝑥𝑥𝑥)

will mean the variable coefficient of the beam 
foundation. Before presenting the main result, we
recall that the equation of transverse vibrations of a 
homogeneous Euler-Bernoulli beam of length l at 

0>,<<0 tlx has the following form
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where w(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) is the transverse displacement; ρ is the 
density of material; 𝐴𝐴𝐴𝐴 is the cross-sectional area; 𝐸𝐸𝐸𝐸 is 
the elastic modulus of material; J is the moment of 
inertia of the cross-sectional area of relative to around 
the z axis.

We denote 
EJ

Aρ
=

2ω
λ . In the new notation, the 

problem of transverse vibrations of a beam with 
hinged fastening at both ends by replacing

)(sin)(=),(w txytx ω is reduced to the following 
spectral problem: 
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The operator corresponding to the spectral 
problem (1)-(2) is denoted by )(=)( xyxKy λ . For

( ) 0,k x ≡ the eigenvalues of the operator K are 

calculated explicitly ...,2,1,
4

=





= n

l
n

n
πλ [20, P. 

269]. Spectral properties with respect to symmetric 

equivalence of the operator K were investigated in 
[21]. The system of eigenfunctions{ }∞=1)( nn xy of the 
operator K forms an orthonormal basis of ( )lL ,02 .

Problem 1: Let )( 1 IB µ− be the operator in 
( )lL ,02 correspond to the problem: 
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where 1α is a nonzero real number. )(1 xy is an 
eigenfunction of problem (1), (2) corresponding to 
the first eigenvalue 1λ . Select the boundary 
parameter 1α so that the eigenvalues of the operator

1B are outside the interval ( )22 ,λλ− .

The operator 1B can be considered a 
perturbation of the operator K , since only the 
domain ( )KD of the operator K has changed. 

The main result is 
Theorem 1. If the boundary parameter α is 

chosen so that the inequality holds

( ) ( )01112 y ′′′≤− αλλ ,                  (5)

then the eigenvalues { }∞=1nnµ of the operator 1B are 

determined by the formula nn λµ = for 2≥n and 

1µ is the only real root outside the interval 
( )22 ,λλ− of the equation
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Auxiliary statements. To prove the theorem, we 
need some auxiliary statements. It is obviously, the 
operator K is self-adjoint. All eigenvalues of self-
adjoint operator K are real. The eigenfunctions of a 
self-adjoint operator corresponding to different 
eigenvalues are orthogonal [22, Theorem 3, 
Corollary, P. 31].

Lemma 1. We have the identity

( ) ( ) ( ) ( ) ( )∫ ′′′=−
l

nnn yudxxyxu
0

00λµ .

Proof of Lemma 1. The right-hand side of the 
identity can be written as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ =−=−
l l l

nnnnn dxxyxudxxyxudxxyxu
0 0 0

λµλµ
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Direct calculation shows that the first term is equal to
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Taking into account the last relation, we obtain 
the proof of Lemma 1. Lemma 1 is proved.

Proof of Theorem 1. Taking into account 
Lemma 1, for further calculations we rewrite the 
perturbed boundary conditions (4) of the operator 1B
using the forms 𝑉𝑉𝑉𝑉𝑘𝑘𝑘𝑘−1, 𝑘𝑘𝑘𝑘 = 1, 2, 3, 4
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It is known that the question of finding the 
eigenvalues of problem (3), (6) is reduced to finding 
the zeros of the characteristic determinant [22, pp. 1-
27] 

∆(𝜇𝜇𝜇𝜇) = �
𝑉𝑉𝑉𝑉0[𝑢𝑢𝑢𝑢1] 𝑉𝑉𝑉𝑉1[𝑢𝑢𝑢𝑢1] 𝑉𝑉𝑉𝑉2[𝑢𝑢𝑢𝑢1]
𝑉𝑉𝑉𝑉0[𝑢𝑢𝑢𝑢2] 𝑉𝑉𝑉𝑉1[𝑢𝑢𝑢𝑢2] 𝑉𝑉𝑉𝑉2[𝑢𝑢𝑢𝑢2]
𝑉𝑉𝑉𝑉0[𝑢𝑢𝑢𝑢3] 𝑉𝑉𝑉𝑉1[𝑢𝑢𝑢𝑢3] 𝑉𝑉𝑉𝑉2[𝑢𝑢𝑢𝑢3]

�          (7)

where 𝑉𝑉𝑉𝑉𝑘𝑘𝑘𝑘−1, 𝑘𝑘𝑘𝑘 = 1, 2, 3, 4 are boundary forms that
correspond to boundary conditions (6), 

{𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘(𝜇𝜇𝜇𝜇, 𝑥𝑥𝑥𝑥)}𝑘𝑘𝑘𝑘=13 are the fundamental system of 
solutions to equation (3) generated by the conditions

𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘
(𝑚𝑚𝑚𝑚−1)(𝜇𝜇𝜇𝜇, 𝑥𝑥𝑥𝑥)�

𝑥𝑥𝑥𝑥=𝑎𝑎𝑎𝑎
= �0, if 𝑘𝑘𝑘𝑘 ≠ 𝑚𝑚𝑚𝑚,

1, if 𝑘𝑘𝑘𝑘 = 𝑚𝑚𝑚𝑚,  𝑘𝑘𝑘𝑘,𝑚𝑚𝑚𝑚 = 1, 2, 3,

where 𝑎𝑎𝑎𝑎 is an arbitrary point of the segment [0, 𝑙𝑙𝑙𝑙].
The characteristic determinant (7) for the operator 

1B has the form

∆(𝜇𝜇𝜇𝜇) = ),,( 11 λµαf ∆𝐾𝐾𝐾𝐾(𝜆𝜆𝜆𝜆),          (8)

where ∆𝐾𝐾𝐾𝐾(𝜆𝜆𝜆𝜆) is the characteristic determinant of the 
operator 𝐾𝐾𝐾𝐾. The first part of Theorem 1 follows from 
relation (8). Let us prove the second part of Theorem 
1. Let us calculate the first eigenvalue 1µ and prove 
that it is outside the interval ( )22 ,λλ− . To do this, 
we find the single root of the function ),,( 11 λµαf
with respect to the spectral parameter µ :

)0(1111 y ′′′+= αλµ . It follows from condition (5) for 
the boundary parameter α that the second part of 
Theorem 1. Theorem 1 is proved.

The previous Theorem 1 can be extended to 
control with several eigenvalues, which are important 
from the point of view of the application [7-10]. Let 
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)( 2 IB µ− be the operator in ( )lL ,02 correspond to 
the problem: 
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where 2,1, =nnα are nonzero real numbers. 

)(xyn are eigenfunctions of problem (1), (2) 
corresponding to the first two eigenvalues 1λ and 2λ
. Select the boundary parameters 2,1, =nnα 1α so 

that the eigenvalues of the operator 2B are outside 
the interval ( )33 ,λλ− .

Generalization of Theorem 1 can be formulated 
as follows:

Theorem 2. The eigenvalues { }∞=1nnµ of the 

operator 2B are determined by the formula

nn λµ = for ,3≥n

and 1µ and 2µ are the roots of the equation
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In this case, 2,1, =nnα is chosen so that the 
roots of equation (9) are outside the interval
( )33 ,λλ− .

The proof of Theorem 2 is similar to Theorem 1. 
Next, we consider the clamped fixed spectral 

problem for the Euler-Bernoulli equation. In this 
case, the spectral problem is described as the 
boundary value problem with differential equation 
(1) and the following boundary conditions 
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Problem 2: Let )( 3 IB µ− be the operator in 
( )lL ,02 correspond to the spectral problem with 

differential equation (1) and the following internal
boundary conditions
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where 3α is a nonzero real number. )(1 xy is an 
eigenfunction of problem (1), (10) corresponding to 
the first eigenvalue 1λ . Select the boundary 
parameter 3α from (11) so that the eigenvalues of the 

operator 3B are outside the interval ( )22 ,λλ− .
Similarly to Theorem 1, we can formulate the 
following statement 

Theorem 3. If the boundary parameter 3α is 
chosen so that the inequality holds

( ) ( )ly1312 ′′′−≤− αλλ ,               (12)

then the eigenvalues { }∞=1nnµ of the operator 3B are 

determined by the formula nn λµ = for 2≥n and 

1µ is the only real root outside the interval 
( )22 ,λλ− of the equation

( )
1

131
λµ

α
−
′′′

−=
ly

.

The proof of Theorem 3 is similar to the proof of 
Theorem 1 and is based on the following 

Lemma 2. We have the identity 

( ) ( ) ( ) ( ) ( )∫ ′′′−=−
l

nnn lyludxxyxu
0

λµ .

Lemma 2 is proved similarly to Lemma 1. Note 
that spectral properties with respect to symmetric 
equivalence of spectral problem (1), (10) with axial 
load without )(xk were investigated in [23].
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Conclusions
The well-known algorithm for controlling the 

first eigenvalues for second order differential 
operators developed by Professor Kanguzhin is 
adapted for the vibration of a homogeneous beam 
with hinged and clamped fixings at both ends. On the 
basis of the adapted algorithm, the conditions for the 
boundary parameters for the control of the first 
eigenvalues are written out.
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