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Abstract. In this paper we discuss the mathematical and computer modeling of non-isothermal two-phase flows 
with suspended particles. Natural convection between an outer cubical cavity and an inner hot sphere is investigated. 

To simulate heat fluxes loaded with particles, a thermal model of the lattice Boltzmann equation in combination 
with the interpolated bounce back method (TLBM-IBB) has been developed. In TLBM-IBB, IBB is used to process 
liquid-solid interfaces, and TLBM is used to simulate the heat flow of a fluid. The momentum exchange method is used 
to calculate the hydrodynamic force on the particle surface. Simulation performed for a range of Rayleigh numbers 

. 
The accuracy and efficiency of the existing method is demonstrated by the example of solving the test problem of 

natural convection around a stationary particle and three-dimensional compressible natural convection in a square 
cavity filled with air, which has a hot wall on the left and a cold wall on the right, and two horizontal walls are adiabatic. 
The results obtained are in good agreement with the experimental and numerical results of other authors.
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Introduction 
 
Dispersed multiphase flows are widespread in 

nature and industry. In such applications, the 
movement of solid particles is often accompanied by 
heat transfer phenomena and chemical reactions. 
Moreover, particle motion and heat transfer between 
carrier fluid and particles in these thermomechanical 
systems are often strongly interrelated. In these cases, 
heat transfer dominates and controls the flow, 
creating natural convection currents and counter-
currents, modifying locally the fluid viscosity, etc. 
With the rapid development of computer power, 
direct numerical simulation (DNS) based on the 
Navier-Stokes equations or the discrete lattice 
Boltzmann equation for solving fluid flow problems 
has become a practical and important tool for 
studying mechanics in solid particle flows. Many 
DNS methods have been proposed over the past 
decade. They can be divided into two categories: 
Boundary Fitting Methods and No Boundary Fitting 
Methods, depending on whether a bounding mesh is 
used to solve the flow field. For boundary fitting 
methods, such as the finite element method of 
arbitrary Lagrangian-Eulerian (ALE) (FEM) [1], 
fluid flow is calculated on a mesh with boundary 
fitting, and usually re-engagement is required as the 
interface moves, while for methods without boundary 

approximations such as the Lattice Boltzmann 
Method (LBM) [2], the Immersed Boundary Method 
(IB) [3], the Lagrange Distributed Multiplier Method 
(DLM / FD) [4], Accelerated Stokes Dynamics 
(ASD) [5] and the force interaction method (FCM) 
[6,7], the fluid flow is calculated on a stationary grid 
built over the entire area, including both the outer and 
inner parts of the particles. Although there has been 
an increasing interest for corresponding studies in 
recent years, only few publications can be found. 

Mesoscopic methods solve a relatively simple 
basic equation and have definite properties, such as 
low numerical dissipation, the possibility of 
processing complex boundaries and high parallel eff. 
Different kinetic models have been proposed for the 
treatment of thermal flow, excellent from 
Boussinesq, in which the work is considered at the 
expense of viscous dissipation and compression. 
Among these approaches, the model of the double 
distribution function is widely used when modeling 
the heat flow [8- 10]. 

Yu et al. [5] used the Distributed Lagrange 
Multiplier / Fictitious Domain (DLM / FDM) method 
to simulate two-dimensional (2D) heat transfer solid 
particle flows. They considered particles to be 
constant or variable temperature. Later, the DNS 
method based on the DLM / FD (Distributed 
Lagrange Multiplier / Fictitious Domain) method to 
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simulate the problem of a three-dimensional 
spherical catalyst rising in the body due to natural 
convection was proposed [4]. Later, various thermal 
TLBM models were proposed with a combination of 
the immersed boundary method for a more accurate 
representation of the real liquid-solid interface. 
Although each boundary processing scheme has been 
separately tested and applied to different physical 
problems, as far as we know, they have yet to be 
systematically compared and evaluated under the 
same conditions. 

For example, in this work, the deposition of solid 
particles with thermal convection was simulated 
using the direct forcing IBM (immersed boundary 
method) – TLBM [2, 3]. At the same time, in the 
article [6], a method of high-order immersed 
boundaries was developed based on a ghost-cell 
(IBM) for flow and thermal modeling of multiphase 
flow systems with moving spherical particles. A 
Ström et al. applied the VOF (volume of fluid) 
method for the dynamics of the movement of solid 
particles in combination with the effects of heat 
transfer [1]. 

In this work, a thermal model of the lattice 
Boltzmann method with an interpolated bounce back 
scheme (IBB-TLBM) is developed to study the 
problem of natural convection with a curved surface. 
With this thermal LB model, we simulated the 
following two types of thermal flows: one is thermal 
flows in a cubic cavity with hot and cold vertical  
 

walls and located spherical particle with constant 
temperature, the other is natural convection in a cubic 
cavity convection between an outer cubical cavity 
and an inner hot spherical particle. For the numerical 
simulation of the problem the Lattice Boltzmann 
method applying the D3Q19 model is used. 

 
Problem statement  
 
To check the numerical algorithm, the results 

obtained within the framework of solving this 
problem were compared with the results obtained 
experimentally, which showed good agreement. 

Two test problems are being solved in this work. 
In the first problem, the dynamics of a hot sphere in 
a closed cube-shaped cavity with top and bottom 
adiabatic walls and with the rest of the walls at zero 
temperature is considered (Figure 1, a). The center of 
the sphere is at a distance � � �

�� above the center of 
the cube. The proportion of the sphere diameter with 
the wall length is �� �

�
�. 

Figure 1, b shows the computational domain of 
the second test problem, which concerns a dynamics 
of hot sphere, located in a cubical cavity. The front, 
back, top and bottom walls of the cubic are adiabatic 
and impenetrable. An increased temperature 𝑇𝑇� is set 
on the left wall, while a reduced temperature 𝑇𝑇� is set 
on the right wall. All boundary conditions are 
constant in this work.

  
 

 
A 

 
b 

 
Figure 1 – Computational domains. 
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Using Boussinesq approximation the system of 
equations in three-dimensional space can be obtained 
as: 
  

0divu 

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where 𝑢𝑢�⃗  is the velocity vector, 𝑝𝑝 is the pressure, 𝜌𝜌� is 
the fluid density, 𝜗𝜗� is the kinematic viscosity, 𝑇𝑇 is 
the temperature, 𝑇𝑇� � 𝑇𝑇�, 𝛽𝛽� is the thermal expansion 
coefficient, 𝚥𝚥 is the vertical direction unit vector, 𝑘𝑘 is 
the thermal conductivity coefficient, 𝑐𝑐� is the heat 
capacity and 𝑡𝑡 is the time. 

At the initial moment of time, as well as on the 
walls of the considered region, the fluid flow 
velocities are equal to zero. 

The system of equations for a fluid medium can 
be reduced to a dimensionless form using the 
following dimensionless quantities: 
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Where 𝑢𝑢�⃗ ∗ is the dimensionless velocity 

components, 𝑈𝑈� is the characteristic velocity, 𝑇𝑇∗ is 
the dimensionless temperature, 𝑝𝑝∗ is the 
dimensionless pressure, 𝑡𝑡∗ is the dimensionless time 
𝑅𝑅𝑅𝑅 is the Reynolds number, 𝑃𝑃𝑅𝑅 is the Peclet number, 
𝑃𝑃𝑃𝑃 is the Prandtl number and 𝐺𝐺𝑃𝑃 is the Grashof 
number. 

The equations take the following dimensionless 
form: 
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Particle dynamics 
 
The motion of a solid particle in a viscous 

medium is determined by the following equations: 
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where 𝑀𝑀 is the mass of solid particle, 𝜌𝜌� is the density 
of solid particle, �⃗�𝐺 is the hydrodynamic force acting 
on a solid particle, �⃗�𝐺� is a repulsive force exerted on 
the solid particle by the walls, �⃗�𝑋 is the particle 
position. The article deals with the case when the 
particle temperature is constant. 

 
Numerical method 
 
The numerical solution in this work is based on 

the D3Q19 model of the thermal lattice Boltzmann 
method [11]. The boundary condition between fluid 
and solid is determined by the IBB method [12]. The 
movement of a solid particle is carried out using the 
momentum exchange method [13].  

The lattice Boltzmann equation is derived from 
the continuous fundamental equation of kinetic 
theory: 
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by discretizing the continuous Boltzmann equation in 
the space of velocities, limiting the continuous 
velocity 𝜉𝜉 to a discrete set of velocities 𝑅𝑅�. Further, 
the equation is discretized in spatial variables and 
time. The relationship between the LBE and the 
macroscopic equations of fluid mechanics is 
established using the Chapman-Enskog analysis [11]. 

The lattice Boltzmann equations for the fluid 
flow and temperature in the Batnagar-Gross-Krook 
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(BGK) [15] approximation of the collision operator 
are estimated as: 
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where 𝑓𝑓� is the velocity distribution functions, 𝑔𝑔� is 
the temperature distribution functions, 𝑒𝑒� is the 
discrete lattice speed, 𝜏𝜏�, 𝜏𝜏� are the relaxation times, 
𝐹𝐹� is the force component, Δ𝑡𝑡 is the lattice time step, 
𝑓𝑓���, 𝑔𝑔��� are the equilibrium distribution functions for 
velocity and temperature fields, respectively. 

The equilibrium functions are defined by the 
following formulas: 
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where 𝑐𝑐 � ∆�

∆� , ∆𝑥𝑥𝑥and ∆𝑡𝑡 are the lattice steps in space 
and time, which are equal to one. The following 
shows the weights in all directions:  
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Figure 2 – D3Q19 model 

 
 
In the D3Q19 model (Fig. 2), discrete speeds are 

calculated using the following formulа:

 
 

(0,0,0) , 0,
( 1,0,0) , (0, 1,0) , (0,0, 1) , 1 6,
( 1, 1,0) , ( 1,0, 1) , (0, 1, 1) , 7 18,

i

c i
e c c c i

c c c i


     
        

  

 
In this paper, to add the force term �⃗�𝐹 �

�𝑔𝑔���� � ��� to LBM we apply the scheme 
suggested by Guo et al. [14]: 

 

 
 
where 𝑐𝑐� � �

�� is the lattice speed of sound. 
The evolution equations are divided into two 

steps, collision and streaming: 
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After the second step, it is necessary to update the 

macroparameters (density, velocity, temperature) 
according to the following formulas: 
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Figure 3 – «Fluid-solid particle» interface 

 
The following boundary conditions were used to 

close the system of equations. 
 

The bounce back rule was used to process the 
boundary condition on all walls [12]: 
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 The bar above the index indicates the opposite 
direction. 

For the boundary where the temperature is 
constant, the distribution functions can be obtained 
as: 

 
( , ) ( , ) 2 , 0.i ww i w iig Tx t t g x t e n        

 
where 𝑇𝑇� means the wall temperature. 

Neumann's condition for temperature on all other 
walls: 
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 To obtain the optimal condition at the moving 
solid-fluid interface, we use Bouzidi's interpolated 
bounce back scheme [12, 13]: 
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Where � � �⃗���⃗�

�⃗���⃗� , 𝑢𝑢�⃗ � is the flow velocity on the 
surface of a solid particle, 𝑇𝑇� is the temperature on 
the surface of a solid particle, the location of the 
nodes �⃗�𝑥�, �⃗�𝑥�, �⃗�𝑥�, �⃗�𝑥� is shown in Figure 3. 

 To determine the velocity and location of a solid 
particle, we approximate equations (8) – (9): 
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To obtain the more accurate results, this article 

uses the momentum exchange method to find the 
hydrodynamic force [13] in the equation (8): 
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And the repulsive force in the (8) is found as 
follows: 
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where 𝑑𝑑 is the distance between the center of the 
particle and the wall, 𝑅𝑅 is the radius of the particle, 
𝑑𝑑� is the minimum gap between the particle surface 
and the wall, 𝜀𝜀� is the small stiffness parameter 
�𝜀𝜀� � ��. 

It remains to find the distribution functions for 
the new nodes of the fluid that appeared during the 
displacement of the solid particle. For this, the 
averaged extrapolation procedure is applied [12]:  
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Where 𝑘𝑘 means possible extrapolation directions 
and 𝑁𝑁𝑘𝑘 is the number of possible extrapolation 
directions. 

  
Results and discussion 
 
To validate the accuracy of the IBB-TLBM, the 

natural convection between a cold square and a 
concentric hot sphere is conducted. The hot sphere is the 
immersed body in the simulation. The dimension of the 
cell is 𝐿𝐿��𝐿𝐿��𝐿𝐿�� 1� � 1� � 1� in this work. 
Simulation results are provided at Rayleigh numbers 
𝑅𝑅� � 1�� � 1�� and the Prandtl number is fixed as 
�� � ���. Three dimensional grid size is 𝑁𝑁��𝑁𝑁��𝑁𝑁��
1�� � 1�� � 1��. The space step and the time step are 
determined as follows: �� � �

��, �� � ���1 � ��.  
We set the dimensional parameters to:  
The sphere is stationary during the simulation and 

maintains a constant dimensionless temperature 𝑇𝑇� �
1. The surrounding fluid is initially at 𝑇𝑇 � �. This 
temperature difference gives rise to natural 
convection. As the fluid near the sphere gradually 
heats up, it moves upward, and the cold liquid near 
the side walls moves downward. 

 
                                                      а)                                                                                          b) 

 
Figure 4 – Isothermals (a) and streamlines (b) for natural convection between a cubical cavity  

and a sphere, with 𝑅𝑅� � 1��� �� � ���� � � ����� 
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                                                      а)                                                                                          b) 

 
Figure 5 – Isothermals (a) and streamlines (b) for natural convection between  

a cubical cavity and a sphere, with �𝑎𝑎 � 10�, �� � 0��, � � 0�0�� 
 
 

Streamlines and isotherms of various 
configurations for �𝑎𝑎 � 10�, 10� are shown in Fig. 
4-5, and they show that they are all symmetrical 
about a vertical line of average width. 

The Rayleigh number has a significant effect on 
the rate of heat transfer. When the Rayleigh number 
is small (Figure 6), heat transfer between the inner 
sphere and the outer square is mainly due to 

conduction. As the Rayleigh number increases, 
convection gradually prevails.  

Our second validation test concerns a motion of 
spherical particle, located in cubical cavity with cold and 
hot walls. The left and right walls are kept at constant 
cold and hot temperature, respectively; while the other 
four vertical walls are adiabatic. The particle 
temperature 𝑇𝑇� is assumed constant with time.  

 

 
                                                      а)                                                                                          b) 

 
 

Figure 6 – Isothermals for natural convection between a cubical cavity and a sphere, with 
�𝑎𝑎��𝑎𝑎 � 10�, � �� �𝑎𝑎 � 10� 
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                                            (а) t=0.039 sec              (b) t=0.078 sec 

 

 
                                                 (c) t=0.156 sec          (d) t=0.234 sec 

                       
 

Figure 7 – Time evolution of flow pattern for a single spherical particle in a cubical cavity  
at �� � �.�� � � �.��� �� � �.�� �� � ���. 

 
 
With a large temperature difference, the transition 

to an unsteady flow is asymmetric for flows near the 
hot and cold walls. For the investigated range of 
Rayleigh numbers in the region of the cold wall, the 
low-frequency shock instability of the boundary 
thermal jet in the lower corner prevails Fig. 7-8. For  
 

the hot-wall region, in addition to the shock instability 
of the upper angle, the instability of the boundary layer 
with high-frequency oscillations is observed.  

In Fig. 9, the time evolution of the temperature 
contours at �� � ��� with different values of Eckert 
number is shown. 
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                                            (а) t=0.039 sec     (b) t=0.078 sec  
 

 
(c) t=0.156 sec     (d) t=0.234 sec  

 
Figure 8 – Time evolution of flow pattern for spherical particle in a cubical cavity  

at  
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(а) t=0.039 sec     (b) t=0.078 sec 

 

 
(c) t=0.156 sec     (d) t=0.234 sec 

 
Figure 9 – Time evolution of flow pattern for spherical particle in a cubical cavity  

with �� � ���� � � ����� �� � ���� �� � ��� at different Eckert numbers 𝐸𝐸𝐸𝐸 
 
 

 
Conclusion 
 
In this paper, we developed a three-dimensional 

(3D) double distribution function (DDF) based LB 
model with an interpolated bounce-back method 
(TLBM-IBB) to simulate thermal convective flows 
with a curved boundary. The curved boundary is 
processed using the Immersed Boundary (IBB) 
method, the TLBM method for hydrodynamic and 
thermal coupling. The force density in the LB 
equation is calculated using a momentum- exchange 

and a solid- fluid interaction found using Bouzidi’s 
approach. 

We first modeled the case of natural convection 
in a cubic cavity, heat transfer between a cold cube 
and a concentric hot sphere. The significant influence 
of the Rayleigh number on the rate of heat transfer 
has been shown. When the Rayleigh number is small, 
heat transfer between the inner sphere and the outer 
cubic is mainly due to conduction. Then the motion 
of a spherical particle with a constant temperature in 
a cubic cavity with a cold and hot wall was simulated. 
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It was shown that as the temperature increases in the 
volume of the particle and is transferred to the 
surrounding fluid, the ascending flow of natural 
convection increases, prevails over buoyancy, and 
the particle moves up to the top of the cavity. It 
allows resolving the motion of solid particles in the 
fluid, even in presence of large heat transfer effects. 
It was shown that for large values of the Rayleigh 
number, the convection effect prevails. The results 
were also compared with the literature and found 
excellent agreement. These study results confirm the 
accuracy of the TLBM-IBB method. 
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