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Computational turbulent combustion
in the age of artificial intelligence and quantum information

Abstract. The impact of high-performance computing on the society has been enormous, but it is easy 
to be taken for granted. In today’s world, it is virtually impossible to imagine system design or major 
decision making not aided via predictive modeling and simulation. Now that we are experiencing the Data 
Revolution and the emergence of the Second Quantum Revolution, it is wise to consider both of these 
elements in computational science and engineering. Data-driven modeling approaches and demonstrated 
speed-ups of quantum algorithms have the potential to transform scientific discovery. This will affect the 
fabrics of industrialized societies in diverse disciplines. A research arena which can substantially benefit 
from these technologies is combustion. This field has been the subject of heavy computational research for 
many decades now. In this review, some examples taken from the previous works of the author are 
presented to demonstrate how the field of computational turbulent combustion is benefiting from modern 
developments in machine learning (ML) and quantum computing (QC).

Key words: computational turbulent combustion, computational science and engineering, speed-ups 
of quantum algorithms, machine learning,  quantum computing.

Introduction 

Computer modeling and numerical simulation 
have been rapidly growing in importance throughout
the sciences, engineering, medicine as well as in most 
other disciplines. We are now in an era where, 
increasingly, experimental and computational 
researchers are teaming up to tackle grand challenge 
problems. For over two decades the case has been 
made for recognizing computational science and 
engineering (CSE) as a priority interdisciplinary area 
for funding agencies, and to expand and strengthen 
the education in its related disciplines [1–3]. We are 
also in the midst of experiencing both the Big Data 
Revolution [4], and the emergence of the Second 
Quantum Revolution [5]. The amount of data 
available is doubling yearly, and artificial 
intelligence (AI), in particular machine learning 
(ML) methods are playing an increasingly important 
role in analyzing this data and using it to deduce new 
models of processes. Moreover, quantum mechanical 
phenomena have evolved into many core 
technologies and are expected to be responsible for 
many of the key advances of the future. Quantum 
computing (QC), in particular, has the potential to 
revolutionize computer modeling and simulation. 
The importance of these fields to the global economy 

and security are well recognized, promoting an even 
more rapid growth of the related technologies in the 
upcoming decades. This growth is fueled by large 
investments by many governments and leading 
industries. An arena in which both QC and AI are 
promoted to play a more significant role is CSE [2, 3, 
6, 7]. Since the early 1980s, computational 
simulations have been known as the 3rd pillar of
science [8, 9], and are now being augmented by this 
4th paradigm because of the big data revolution [10].

In the arena of computation, now there are some 
doubts about the longevity of Moore’s law [11] 
which has largely held true for over five decades [12]. 
As silicon-based processors shrink to smaller and 
smaller sizes, physical limitations start to play an 
important role. As a result, the expense and effort 
required to continue the increase in performance of 
supercomputers are now much greater than ever 
before. In order to provide new disruptive means to 
perform computations with increased complexity, the 
CSE community will need a radical departure from 
the conventional classical computing platforms. 
Quantum computing is a particularly promising 
candidate to be this disruptive technology for many 
computational problems [13–23].

The rate of progress in QC technology is very 
promising. In fact, the rapid development of this 
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technology has led to what is now known as the 
“Neven’s law,” stating that: “quantum computers are 
gaining computational power relative to classical 
ones at a doubly exponential rate.” The QC 
community as a whole has an overarching goal to 
build a general purpose, universal quantum 
computers [24]. Google, IBM, Intel, Microsoft, and a 
large and growing number of start-ups in the US and 
abroad are developing such machines [23]. Quantum 
computers are increasingly available on the cloud, 
with commercial offerings from IBM, Microsoft, and 
Amazon recently being announced. There is also 
increasing momentum and excitement in the field, 
with rapid progress in building non-corrected, so 
called noisy intermediate scale quantum (NISQ) 
computers [19], and the promise of error-corrected 
machines in the not-too-distant future.

Applications in Turbulent Combustion

Despite all of the dedicated efforts towards the 
development of alternative and/or sustainable energy 
resources, combustion still provides a large portion 
of the energy needs worldwide, a situation that will 
likely remain the same within the foreseeable future. 
Associated with combustion is air pollution and the 
greenhouse effect; thus the need for the reduction of 
CO2 emissions while maintaining high combustion 
efficiency. These concerns, along with stringent 
demands to reduce petroleum consumption, are 
putting a high priority on combustion research. In 
most cases, combustion is accompanied by 
turbulence where the latter provides the means of 
enhanced fuel-air mixing. The physics of turbulent 
reactive flows is notoriously difficult due to the 
intricacies of the interactions between chemistry and 
turbulence. The phenomenon of mixing at both micro 
and macro scales and its role and capability (or lack 
thereof) to provide a suitable environment for 
combustion, and the subsequent effects of 
combustion on hydrodynamics, have been at the heart 
of turbulent combustion research for over half a 
century now [25–27].

Researchers in computational turbulence and 
combustion are well versed in advanced numerical 
algorithms, and how to use them effectively in 
parallel numerical simulations. For over 40 years, the 
fields of computational turbulent combustion have 
been one of the most intense fields of CSE [28]. 
Statistical methods continue to constitute the most 
practical means of turbulent combustion predictions. 
These methods involve stochastic representation of 
the transport equations, augmented with closures to 

account for the effects of unresolved scales. Among 
the variety of stochastic tools developed within the 
past century, the probability density function (PDF) 
methods have proven to be particularly effective [29]. 
This is due to the fundamental property of PDF as it 
accounts for all of the statistical variations of the 
transport variable [30–32]. This feature is 
particularly appealing for modeling of chemically 
reactive flows, as it accounts for the effects of 
chemical reactions in an exact manner [33–35].

A major challenge in utilizing PDF is associated 
with its modeling and computational simulations. 
Combustion engineers have been trying to deal with 
this issue [36], and there is a continuing need to make 
use of advanced computational methodologies for 
turbulent combustion research. In this article, two 
examples are presented to demonstrate how ML/DL 
and QC can be useful in this regard. These examples 
are taken from this previous publications in which 
this reviewer is a co-author.

a. Deep-Learning of Turbulent Scalar Mixing

In this example, detailed in Ref. [37], we consider 
the problem of mixing of a Fickian passive scalar 
𝜓𝜓𝜓𝜓 = (𝑡𝑡𝑡𝑡,𝒙𝒙𝒙𝒙) (𝑡𝑡𝑡𝑡 denotes time and 𝒙𝒙𝒙𝒙 is the position 
vector), with diffusion coefficient Γ from an initially 
symmetric binary state within the bounds −1 ≤ 𝜓𝜓𝜓𝜓 ≤
+1. Therefore, the single-point PDF of 𝜓𝜓𝜓𝜓 at the initial 
time is 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿(0,𝜓𝜓𝜓𝜓) = 1

2
[𝛿𝛿𝛿𝛿(𝜓𝜓𝜓𝜓 − 1) + 𝛿𝛿𝛿𝛿(𝜓𝜓𝜓𝜓 + 1)]. In 

homogeneous turbulence, the PDF is governed by 
[33] 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕(𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿)

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
= 0, where 𝐷𝐷𝐷𝐷 denotes the 

conditional expected diffusion of the scalar field. The 
closure problem in the PDF transport is associated 
with this diffusion, and modeling of this term has 
been a stumbling block since the early days of PDF 
modeling [33, 34, 38]. 

Modern ML techniques have the potential to be 
utilized for PDF model developments [39, 40]. Given 
data {𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛,𝜓𝜓𝜓𝜓𝑛𝑛𝑛𝑛,𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛}𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 on time and the PDF, we 
approximate the functions 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 and 𝐷𝐷𝐷𝐷 by two deep 
neural networks to obtain the physics-informed 
neural network 𝑅𝑅𝑅𝑅 ≔ 𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕(𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿)

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
as illustrated in 

Fig. 1. We obtain the required derivatives to compute 
the residual network 𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡,𝜓𝜓𝜓𝜓) via automatic 
differentiation [41]. This allows accurate evaluation 
of derivatives at machine precision with ideal 
asymptotic efficiency. To assess the performance of 
this deep learning algorithm, we considered the PDF 
model obtained by the amplitude mapping closure 
(AMC) [42–44]. The AMC captures many of the 
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basic features of the binary mixing problem. Namely, 
the inverse diffusion of the PDF in the composition 
domain from a double delta distribution to an 
asymptotic approximate Gaussian distribution, as the 
variance goes to zero. Figure 2 depicts the exact [44] 
and the learned conditional expected diffusion 
𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡,𝜓𝜓𝜓𝜓). As demonstrated the agreement is excellent 
even though the algorithm has seen no data 
whatsoever on the conditional expected diffusion.

b. Quantum Computing for Combustion

In this example, detailed in Ref. [45], we 
demonstrate some potentials of QC for turbulent 
combustion simulations. We consider the transport of 
two initially segregated reactants 𝐹𝐹𝐹𝐹(𝒙𝒙𝒙𝒙, 𝑡𝑡𝑡𝑡) and 𝑂𝑂𝑂𝑂(𝒙𝒙𝒙𝒙, 𝑡𝑡𝑡𝑡),
where 𝒙𝒙𝒙𝒙−𝑡𝑡𝑡𝑡 denote the (homogeneous) space-time. An 
idealized irreversible binary reaction of the type 𝐹𝐹𝐹𝐹 +
𝑟𝑟𝑟𝑟𝑂𝑂𝑂𝑂 → (1 + 𝑟𝑟𝑟𝑟)𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 is considered, and turbulent 
mixing is modelled by the coalescence/dispersion 
(C/D) closure of Curl [38, 46, 47]. Subsequently, all 
of the pertinent single-point statistics of the reacting 
field are determined. The most important of these 
statistics are the mean rates of reactant conversion, 
denoted by 𝒵𝒵𝒵𝒵(𝑡𝑡𝑡𝑡).

A Monte Carlo (MC) methodology is used for the 
stochastic simulation of the C/D model. The quantum 
algorithm is based on quantum phase estimation [48]. 
Figure 3 shows classical simulations of the quantum 
algorithm for estimating the rate of mean fuel 
conversion 𝒵𝒵𝒵𝒵𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡𝑡𝑡). The increasing behavior of 
𝒵𝒵𝒵𝒵𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡𝑡𝑡) as a function of 𝑡𝑡𝑡𝑡 is demonstrated in Fig. 3 
(a). The results of the quantum algorithm are in 
agreement with the highly accurate results via 
classical MC calculations obtained with 𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟 = 220 × 60 
runs, allowing to obtain estimates 𝒵𝒵𝒵𝒵�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡𝑡𝑡) that are 
very close to the actual value of 𝒵𝒵𝒵𝒵𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡𝑡𝑡). The 
estimated rates of reactant conversion from the 
quantum algorithm relative to 𝒵𝒵𝒵𝒵�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡𝑡𝑡), for two values 
of MC samples (𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟), are shown in Fig. 3 (b). The 
relative errors decrease as a function of time because 
the 𝒵𝒵𝒵𝒵(𝑡𝑡𝑡𝑡) approaches 1 as 𝑡𝑡𝑡𝑡 increases. Figure 4 shows 
comparisons of estimation errors from classical MC 
methods (𝜖𝜖𝜖𝜖𝑀𝑀𝑀𝑀) and the quantum algorithm (𝜖𝜖𝜖𝜖𝑄𝑄𝑄𝑄) as 
functions of the total number of computational 
elements (𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟). It is observed that 𝜖𝜖𝜖𝜖𝑀𝑀𝑀𝑀 decreases as 
1 �𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟⁄ while 𝜖𝜖𝜖𝜖𝑄𝑄𝑄𝑄 decreases as 1 𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟⁄ , demonstrating a 
quadratic quantum speedup of the quantum algorithm 
with respect to the classical methodology. The 
advantages of the quantum algorithm are more 
obvious for values of 𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟 for which 𝜖𝜖𝜖𝜖𝑄𝑄𝑄𝑄 ≤ 𝜖𝜖𝜖𝜖𝑀𝑀𝑀𝑀.
However, the genuine advantage is in the different 

scaling of the algorithm. This example has substantial 
applications in practical engineering combustion 
systems. In the near future, it is expected that the 
current classical turbulent combustion simulations 
[49, 50], exemplified by Fig. 5 can benefit from 
quantum speed-up.

Concluding Remarks

The emergence and increased importance of 
massive data sets in many disciplines, coupled with 
the emergence of ML/DL to analyze these data sets 
is already transforming the world, and QC has the 
potential to revolutionize CSE. Data-driven modeling 
approaches, and demonstrated speed-ups of quantum 
algorithms have the potential to transform scientific 
discovery. This will affect the fabrics of 
industrialized societies in diverse disciplines far 
beyond science and engineering. The paradigm of 
scientific discovery offers an elegant path to 
generalization and enables computing with 
probability distributions rather than solely relying on 
deterministic thinking. We have also been witnessing 
demonstration of quantum speed-up. With 
emergence of quantum simulators, quantum 
annealers and analog quantum machines [51–53], 
and the arrival of universal quantum computers with 
50+ qubits, we are now in the era where quantum 
supremacy exists both as a theoretical proposal [54, 
55] and experimental realization [56].

Machine learning is currently one of the most 
popular areas in almost all disciplines. Significant 
efforts are being devoted to this field, not just in its 
basic developments, but also in numerous diverse 
applications. However, it is to be emphasized that 
ML is not magic! It consists of four basic elements: 
linear algebra, optimization, probability & statistics 
and algorithms. Machine learning’s broad popularity 
has been, in part, motivated by production of 
excellent software such as Tensorflow [57]. While 
ML will surely remain as a powerful research tool, it 
must be utilized in the context of a very strong 
physical & mathematical modeling. It is also clear 
that the era of QC is here and the community is 
moving towards developments that could potentially 
have a profound impact on CSE. The challenge lies 
in understanding the new technology, and identifying 
the highest-impact applications. As the Nobel 
Laureate Bill Phillips said: “...Quantum information 
is a radical departure in information technology, 
more fundamentally different from current 
technology than the digital computer is from the 
abacus...” The computational combustion 
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community needs to recognize that this is not a short-
term endeavor. There is a need to build infrastructure 
and expertise in this technological frontier of the 21st 
century.
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Figure 1– Physics-Informed Neural Network: The residual neural network
f is obtained by approximating the unknown solution u by a deep neural network and 

by taking the required spatial and temporal derivatives using automatic differentiation. 
Taken from Ref. [37]

Figure 2 – The exact 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 via the exact model and the learned one are on the top, 
while the exact and learned 𝐷𝐷𝐷𝐷s are in the bottom panels. Taken from Ref. [37].
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Figure 3 – Estimates of the rate of reactant conversion obtained from classical simulations 
of the quantum-algorithm that would solve a reacting flow process using Curl’s model [46]. 

(a) Growth of the estimated rate of reactant conversion as a function of time. 
(b) Comparison of two estimated rates of reactant conversion for 𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟 = 217 × 24 (black line) and
𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟 = 220 × 24 (red line), given by the quantum algorithm, with 𝒵𝒵𝒵𝒵�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡𝑡𝑡). Taken from Ref. [45].

Figure 4 – Comparisons of errors output by the Classical MC method (𝜖𝜖𝜖𝜖𝑀𝑀𝑀𝑀) and 
the Quantum MC algorithm (𝜖𝜖𝜖𝜖𝑄𝑄𝑄𝑄). Taken from Ref. [45].

Figure 5 – Simulation results of the reactor in experiments of Ref. [58].
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