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Integral bvp for singularly perturbed system
of differential equations

Abstract. The article presents a two-point integral BVP for singularly perturbed systems of linear
ordinary differential equations. The integral BVP for singularly perturbed systems of ordinary differential
equations previously has not been considered. The paper shows the influence of nonlocal boundary
conditions on the asymptotic of the solution of the regarded BVP and the significant effect of integral terms
in the definition of the limiting BVP. An explicit constructive formula for the solution of this BVP using
initial and boundary functions of the homogeneous perturbed equation is obtained. A theorem on
asymptotic estimates of the solution and its derivatives is given. It is established that the solution of the

integral BVP at the point # = O is infinitely large as zz — 0 .From here, it follows that the solution of the

considered boundary value problem has an initial jump of zero order. It is found that the solution of the
original integral BVP is not close to the solution of the usual limiting unperturbed BVP. A changed limiting
BVP is obtained. The presence of integrals in the boundary conditions leads to the fact that the limiting
BVP is determined by the changed boundary conditions. This follows from the presence of the jump and
its order. A theorem on the close between the solutions of the original perturbed and changed limiting

https://doi.org/10.26577/ijmph.2021.v12.11.04

problems is given.

Key words: singularly perturbation, small parameter, asymptotic, initial jumps, asymptotic estimate,

BVP.

Introduction

Many applied problems lead to the consideration
of differential systems with small parameters. In the
case when the type of the given system changes as
small parameters tend to zero, then it is said that it is
singularly perturbed. The systematic study of the
theory of singularly perturbed equations began with
the works of A.N. Tikhonov [1] and V. Vazov [2],
where they prove their famous theorems on the
passage to the limit in singularly perturbed
problems.A significant contribution to the further
development of the main directions of the theory was
made by L.S. Pontryagin [3], N.N. Bogolyubov,
Yu.A. Mitropol'skiy [4], M.L. Vishik, L.A.
Lyusternik [5], A.B. Vasilieva, V.F. Butuzov [6],
S.A. Lomov [7], Imanaliev M.I. [8] and others.

In the works, [9-12] initial problems with
infinitely large valueof an initial data for a
sufficiently small value of the parameter were
studied. In this case, the solution to the original
problem for a sufficiently small value of the
parameter approached the solution of the changed
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degenerate problem. Such initial problems are called
Cauchy problems with an initial jump.

BVPs for differential, integro-differential
equations with small parameters at the highest
derivatives are studied in [13-15]. Here take places
initial and boundary jumps phenomena when some
derivatives of the solution are unbounded at the left
point of the segment or at the both ends. In the work
[16] initial problem for piecewise constant argument
differential equations is studied.

The boundary value problems considered in [17,
18] are local. We consider nonlocal boundary value
problems for a system of singularly perturbed
differential equations.

For systems of differential equations, such
problems have not been considered previously. In
these problems, in addition to the initial jumps of the
fast and slow variables, the phenomenon of the initial
jumps of the integral terms also arises. Thus, the
presence of integrals in the boundary conditions leads
to a significant modification of the limiting boundary
value problem, to which the solution of the original
perturbed nonlocal boundary value problem tends.
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Problem statement and auxiliary materials

We present the following singularly perturbed
system of ordinary differential equations of the form

{w"ml OB+ Oy =FO)

YAy (0)z4B, ()2 + Co (D) y = F5 (1)
with the following boundary conditions
hz(t,p)=z(0,u) =
I
h2(t, 1) =21, 0) = | Y ax(x)20 (x pdr =B @)

0i=0
hy(t, 1) =y(0, )=y

where £ > 0—small  parameter,

a, [,y —given
constants, which do not depend on £ .

Now we make two assumptions:

LA(t), B.(t), C.(t),F(t),i =1,2are sufficiently
smooth in the segment0 <7 <1;

m4(t)=2d=const >0.0<¢ <1

Some other conditions will be imposed later. We
view the following homogeneous singularly
perturbed differential equation

Lyz=p2"+4,()z'+B,(1)z=0 (3)
If the conditions I, II are satisfied, then the
fundamental set of solutions z; (¢, 1), i =1,2 of the

equation (3) has the asymptotic representation as
1 —>0[8]:

2 =2 () + O(w), j=0.L

1

29 (6, 1) =——exp %I k() (1! (1)230 (1) +O(w), j =01 @
0

Y

Where &(t) =—4,(t) <0, functions z,,(¢), i =12
are solutions of the problems

A()z'g+ B,(1)z)y =0, z,,(0) =L 4 (1)z ", +
+(4,(t) = B,(1))z,, =0, 2,,(0) =1

respectively have the form

t
B (x)
f)=exp| —[ 21 g |,
z10(?) eXP[ £A1(x) x}

¢ By(x) |
p[g A4 (x) dx}

Let the function K(z, s, ¢) as 0<s<¢t<1 is
solution to the problem

(5)
4,(0) x

Zy0() = 5 (0)

L K(t,p1,6) =0, K(s,5, 1) =

(6
=0, K'(s,s,u)=1

e

The function K(¢, s, #) — the Cauchy function,
which can be representedas [8]:
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Wit,s,
K(tasa ):ﬁ’ (7)

where W (s,¢)
fundamental set of solutions z(s, ), z5(s, 1)
equation (3), and W (t,s, 1) — determinant, obtained

— Wronskian, composed of a

from W(s,u) by replacing its second row with
z,(s, 1), z,(s, u). For the function K(¢, s, u), the
following estimates can be obtained:

@)
) _ th; (t)
B =t o
i exp| L K (D2 (1)
+u exp(lu !K(x)dx} 2 () (s) +  (8)

+O£,u2 + 177 exp [ljx(x)dxn, j=0,1,
Hs

where z,,(¢), i = 1,2 is expressed by formula (5).
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Now we introduce the boundary functions of the
function @, (¢, 1), i =1,2, which are solutions of the

following problem

L,@;(t,)=0, h®;(t, 1) =0y, k,i=12,(9)

where 0); —Kronecker symbol.  Consider the

determinant
Mzt 1) zy(t, 1)
A(u) =

h222 (¢, ,u) h222 (t: 1)

For the determinant A(), taking into account
(2), (4), (5), the asymptotic representation as 1 —> 0
is valid

A(p) = Ay +O(u), (10)

@020

O (2, 1) = ———ex
1 (, 1) Ay W p
+O0| u+
' S (s
DY (1, i) = ————+—exp

A, H;

+0 y+%exp(ijlc(x)dxj , j=0,1,
H MY

Main results.

From the system (1), we find

—j.cz(s)db' r
ytmy=yet  +[(F(s)-
0 (13)
‘jcz(P)dP
—4,(5)2'(s, 1)~ By ($)z(s, pe * ds

Let us substitute in the first equation of system
(1) the expression (13) with respect to z(s, 1), we

acquire the Volterra integro differential equation
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where Ay = a;(0) —hyzy4(2).

III. Let Ay #0

Boundary  functions®, (¢, 1), i =1,2can  be
represented in the form [8]:

A (¢
q)i(ta/u)ZMa i=1927 (11)
A(u)
where A, (¢, ) is the determinant obtained by

replacing the i-th row with the fundamental set of
solutions z; (s, 1), z, (s, &) to equation (3).
For the boundary functions @;(z,u),i=1,2

from (11), with considering (4), (10), one can obtain
the following asymptotic representations as x — 0 :

[ 1 Jt‘zc(x)dx} K/ (H)z0(1) 20 (1) N
0

H Ao

t
1._1 exp lJlic(x)dx , j=0,1,
w! HY

[ljkuyk}fl%?dﬂ+

0 0

(12)

Ly=uz"+A4(t)z'+B,(t)z =

]

=F(t)+ jzl:Hi (t,5)2" (s, u)ds (14)

0 i=0
with the following boundary conditions
hlz(t’ lu) = Z(O, /u) =a
i~ (i) as
oz (t 1) = 20, 1) = [ D" a,(6)20 (x, pyde =p

0 i=0
where
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—jCz (s)ds

F(t)=F(0)~-yC e *

t
—| G (p)dp

Hy(1,5)= G(0)B,(s)e *

We seek the solution to the BVP (14), (15) in the
form:

z(t, 1) = CO, (2, 1)+ C,D, (2, 1) +

! 1
Likesusmas
H

whereC; ,i=1,2
satisfies the integral equations

- unknown constants, u(?, 1)

t

u(t, 1) = £ (& 1)+ [ H(t,s, pus, myds . (18)
0

Here

St = FO+ G 3 H, 0,500 (5, s +

0 i=0

Lo
+C, j D H (1, 5)DY (s, p)ds,

0 i=0

B

H(ts, )=~ [ Y H (6 KD (s, 10dp (19)
% i=0

The kernel H(¢,s,44) is continuous in the
domain 0<¢<1, 0<s<¢ and is bounded for
sufficiently small . Therefore, the resolvent
R(t,s, ) of the kernel H(¢,s, 1) is also limited
andalso has the following asymptotic representation

R(t,s, 1) = R(t,5)+O(u), (20)

where R(t,5)is the part of the resolvent R(Z, s, i)
which do not depend on 1.
Solving equation (18) using the resolvent we find

2
2(t, 1) = D CiO, (b, 1)+ Pt 1),

i=l1

21)
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t

! *ICz(p)dp
- j C()F,(s)e *  ds,
0
*tCz(p)dp
H,(t,5)=C,(t)4,(s)e * , (16)
where
1 -
O.(t, 1) = ®,(t, ) +— [ K (2,5, 1) (s, ),
M (22)
=12, P = [ K (s 0P (s, 0ds
0
o1 ‘
1) = H (t,5, 1)@ (5, 1)ds,
070 (23)

i=1,2, F(t,u)=F(@)+ jR(t, s, W) F(s)ds,

H(t,s, ) = H (t,5)+ [ R(¢, p, 1) H,(p, 5)ds,

s

j=0,1

For the function @ (¢, 1), F(t, ), ﬁj (t,s, 1)

from (23), in view of (20), (12), we get the
following asymptotic representations as ¢ — 0:

— _ _ %j.r((x)dx
¢, 1) =¢ () H, (2, ;)M e +24)
+O(p), F(t, 1) = F(t)+O(uw),

) S
20() / +

&,(t, 1) = ¢, ()~ H, (t,0) ==

+O(:u)a Hj(tasoﬂ):Hj(t,S)-FO(ﬂ)’j :0,1

where

()
(01 (f) 1_]1 (f 0) hZZl()(t) IZ w
0i=0 0
(0 () S)
7a(0) = 1( ) jZH(m) .

0 i=0

Now, from (22), in consideration of (8), (12), (24)
we derivethe asymptotic representations:
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Ql(j) (¢, 1)

_leilkmdx K ()25 (D)2 (1) (1
H A,

+ MdsJ+O M+

40 _tEPOF) , KOR0
A, o Z1o($)Kx(s)

Jj-1
M
lJ‘K()c)dx

U
0
= ’

K(s)

RO _ 086 06O

0y (t, 1) =
? Ay %z (9)K(s) '
1 A _ 1 (26)
7J.K(x)dx J t 7J‘K(x)dx
+leﬂ0 K (t)Zz()(t) 1+.[H1(S’S)ds +0 ﬂ+%e/’0 ,
u A, o K(s) u

2P OF(s) K OF@)

P(‘i)(l‘,/,l) — _I

o Zio(8)K(s) H

1 , —
L% 1 (02,0 F ©)

J-1

l t
— x)dx
“lm)

w x*(0)

From (21), in consideration of (15), we determine
the unknown constants C,, i =1,2 from the system

{Clthl (ta ,U) + C2h1Q2 (Z’ ,U) =a- hlp(ta ,U), (27)

CilpQ (8, 1)+ Coly Oy (2, 1) = = P(t, 1)

where the asymptotic representations are valid

hO @t ) =1, hQ,(t,u)=0, hP(t,u)=0

B EROIG!
WO, (t, 1) = j 2 o) ds +O(),

1 —

0.0 =1 %dﬁow
Pt =[O g o,

0 Z,0(s)x(s)

L
Z0(0) = 2D = ()75 () = [ D 4, ()] (x)dx
s =0
Let the condition be satisfied

1 — —
V. :1—]Mds #0
0 ZIO(S)IU(S)
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+0 ,u+Le

2 >

Then from system (27), in view of (28), we have

Cl =a, CZ =0+ O(ﬂ) > (29)

where

1 —
1 2 o (s)+F
o=| g [ONEEO TG, | g
@ 0 219(8)x(s)

Theorem 1. Underconditions I-IV there exists a
positive constant 14, that for 2 € (0, £, ] there exists a
unique solution of problem (1), (2) which satisfies the
following asymptotic estimates as x — 0:

| 27(t, 1) £ C(| 0 (0) - B +| a4y (0)+y | +

st
+max | F(¢) | +max | F,(t) |)(1+Le “)
0<t<1 0<t<l1 ,UJ

| y(t, 1) 1< C(laa,(0) = | +] a4,(0) +
st (3D
+y [+ max | F (o) [+max | K@) [)(1+e )
where C >0, 0 >0 —some constants independent
of u.
Proof. In view of (26), (29) from (21) for

solutions of the problem (1), (2) we derive the
following asymptotic representations as £ —> 0:
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30 Integral bvp for singularly perturbed system of differential equations

(2a,(0)-0)z" (1) ¢ 2 (1)(ad (5) + 0, (s) + F(s)) o

S _
(-4 A, 0 Z,,(s)K(s)
K (O@h(5)+ 08,(5)+ F(5) &/ (1)z0 () (@hy2,, (1) + @) ( . I H(s,s) ds} N
p HA, ) K(s)

1 %j.r((x)dx
+0 ﬂ+,u”‘e 0 ,j=0,1

_ A,(0)(@hyz, () + w)jelwf N { Fs) 4, (S)Faal (0)-@)z',(5) _
A ) A

V(t, 1) = (y

0 0

i 2w($)ah(P)+ @b (P)+ F(p) () + () + F*(s)} .
0 z,0(p)x(p) K(s)
jc " (32)

(@4, (0)— )z,,(s) I 20 ()@ (P) + @4, () + F (p)) dp} -~
A, q 2 (P)K(P)

ds +

-5, (S)[

A, (t)z,, () (ahyz, () — @) 4 I‘_]l (s,5) i_(i;lc(x)dx
+ A, [1+.|. () ds]e +O0(u)

0

A, (0)ahyzy (1) - w)
Ag

to the form

We transform in (32) the expressions aa;(0)-w, ¥

aa,(0)-w= L(aal(O) . j‘ 2, ()@, (5) + aa, (0)g, (s) + F(s)) dSJ
a)O

0 Z,0(8)K(s)
4,(ahyz,, () - 0) _ _ 40 o [ Z)(F(s)—aH,(s,0)
7 A, =r+as0) Ay, (aa] ©=7 J(: Z,()K () dS)

(33)

and the expressions a@, (t) + @p, (t) + F(t), ap(t) + aa; (0)p, () + F(¢), F(t) — aH,(¢,0) to the form
a@y (1) + 0P (1) + F (1) Z%(a@(fﬂﬂ(ﬁz(fﬂﬁ(f)) =
0
1

s 1
_1llagO-5 H,(1,0)+ WIZ H(1,5)2\8) (s)ds +F (1) — a H, (,0) |,
@y Ay Ay oic0

a@, (t) + aa (0)p, (1) + F(t) = F(1) — aH,(1,0), (34)
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B B e
F(t)~a)(1,0) = ~(a4y(0)+7)| C(0)e 0

_ ~[Ca(pydp
+jR(z,s)cl(s)e 0 ds |+
0

- t - —jCz(p)dp
+F(6)+ [ R(t,9)F (s)ds— (Cl 0+ R(np)cl(p)dp]@ (s)e * ds
0

0

Then from (34) the asymptotic estimate will be
represented in the form

a0+ 0,0+ F(0) <
< Clora (0) - Bl +ar Ay (0) + 7]+

+max |F; (¢)|+ max |F, (1))
0<r<l 0<r<l

|, (1) + aay (0, (1) + F (1) <
<C(lad,(0)+ 7|+ max |F(0)]+ max |F5 (1)) (33)
<t< <t<

Now, from asymptotic formulas (32), in view of
(33) — (35), we get estimates (31). Theorem 1 is
proved.

Theorem 1 implies that

2(0,1) = O(1), 2'0,£) = O(L),
1 (36)
J’(Oa ,U) = 0(1), J/'(Oa ,U) = O(;)’ ,Ll — 0

Consequently, the solution of the integral BVP
(1), (2) has an initial jump of zero order at the left
point of the segment.

A changed unperturbed problem.

In view of the problem (1), (2) as u =0we
obtain the following BVP

{A1<r>3'+31<z>5+cl<r>i .10 )
T4 (OF By (1)Z + Cy (1) = Fy(0)
Wi =a, hit)=y (38)

Now, we investigate the limit passage between
the solutions of the perturbed problem (1), (2) and the
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usual unperturbed problem (37), (38). In system (1),
(2) we carry out a change of variables by the formulae

u(talu) = Z(t,ﬂ)—E(t), V(l,ﬂ) = y(t,ﬂ) _y(t) .
Then we get the system

{ "+ A (Ou' + By (Ou + Cy () = —uz"(t) (39)

Vi+ A, (Ou'+ By (Hu+Cy(t)v =0
with boundary conditions

hlu(t, ,U) =0
hou(t, 1) = B~ by (1)
hyv(t, 1) = 0

(40)

Since in the boundary conditions (38) we did not
use the condition 4, Z(#) .Therefore in the conditions

40y B—hZ(1) # 0 problem (39), (40) is of the
same type as problem (1), (2). Then by virtue of
Theorem 1 we have the following estimates for

u(t, 1), v(t, 1):

[u ' (t, 1) [< C(| B~ m2(1) | +ﬂ)(1+%e ",

j=0,1
st
V() SC( B-mzZ ()| +)+e #),

Hence, it follows that the solution
z(t,u), y(t, ;) does not tend to the solution

Z(t), y(t) of the unperturbed problem (37), (38).
Now, consider the unperturbed system

{ A4()Z +B ()2 +C ()7 = F (1), .

V' +4,(1)Z7+B,(1)2+C,(0)y = F,(t)
with changed boundary conditions

Int. j. math. phys. (Online)



32 Integral bvp for singularly perturbed system of differential equations

hZ()=a+A,, hzZ({)=B+A,,

hF() =7+ A, )

where A_, A ,and A, are initial jumps. The problem

(41), (42) is called a changed unperturbed problem.

Theorem 2. Let conditions I-IV hold. Then for
the difference between of the solutions of the original
problem (1), (2) and changed unperturbed problem
(41), (42) the following asymptotic estimates are
validas 4 —0:

27612 () S C(A, —a, (0)A, |+
1 oo
1A, + A O, [+pt+—Fe ©), /=01

|yt )=y (O£ C(A, =4, (0)A, [+
st (43)
A, + A0A, |+u)(l+e ),

where C >0, 6 >0 — some constants independent
of 1.

Proof. For the functions
Z/l(l,/l) = Z(f,,tl)-f(l‘),V(f,,U) = y(l,ﬂ)—y(l) we
havethe system (39) with boundary conditions

ut,y=-A_, hu(t,u)=-A,,
hu(t, 1) 2 Lu(t, 1) J (44)
hv(t, 1) =-A,

Using estimates (31) to the problem (39), (44),
we have

[u? (6, ) S CIA, —a,(0)A, |+

b_[
1A, + 4,(0)A, !+ﬂ)(l+ie 5, j=0,1

vt )= C(A, —a, (DA, [+

t

-5
+HA, +4,0)A, [+p)d+e 7,

This yields estimates (43). Theorem 2 is proved.
From Theorem 2 we havethat the solution of the
singularly perturbed BVP (1), (2) will tend to the
solution of the changed unperturbed BVP (41), (42)
under the following conditions:
(45)

Ay=aq(0)A,, A, =-4(0)A,

Int. j. math. phys. (Online)

Then the boundary conditions (42) in

consideration of (45) take the form

hz()=a+A., hz({t)=B+a(0)A.,

_ (46)
hy(t) =y —4,(0)A,

where A_— initial jump of the fast variable z(¢, 1) .
Thus, the solution z(t, i), y(t, 1) of the

singularly perturbed BVP (1), (2) as u—0

approaches the solution Zz(¢),y(¢)of the changed

unperturbed BVP (41), (46), i.e. passages to the limit
take place:

lim 29 (e, 1) =29(¢), i=0], 0<r<1
©—0

lim y(t, 1) = ¥(£), 0<t<1.
1—>0

Conclusion

In this work, asymptotic estimates of the solution
of an integral BVP for a singularly perturbed system
of linear ordinary differential equations are obtained.
The study have shown that the solution of the original
singularly perturbed integral BVP does not tend to
the solution of the usual unperturbed BVP. The
presence of integral terms in the boundary conditions
will significantly change the corresponding
unperturbed problem. The solution of the original
singularly perturbed integral BVP tends to the
solution of the so-called changed unperturbed BVP is
proved. However, the boundary conditions have
changes: an initial jump of the fast variable appears.
Thus, the changed unperturbed problem is presented
as a problem with an additional parameter. Note that
this modification of the degenerate BVP is associated
with an infinitely large value of the first-order
derivatives as the small parameter tends to zero. The
results obtained allow us to construct asymptotic
expansions of solutions of singularly perturbed
nonlinear problems.
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