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On the physical behaviours of the conformable fractional modified
Camassa — Holm equation using two efficient methods

Abstract. In recent years, many authors have researched about fractional partial differential equations. Physical
phenomena, which arise in engineering and applied science, can be defined more accurately by using FPDEs. Thus,
obtaining exact solutions of the FPDEs equations have become more important to understand physical problems. In
this article, we have reached the new traveling wave solutions of the conformable fractional modified Camassa — Holm
equation via two efficient methods such as first integral method and the functional variable method. The wave
transformation and conformable fractional derivative have been used to convert FPDE to the ordinary differential
equation. The Camassa — Holm equation is physical model of shallow water waves with non-hydrostatic pressure.
Thanks to these powerful methods, some comparisons, such as type of solutions and physical behaviours, have been
made. Additionally, mathematica program have been used with the aim of checking of solutions. Investigating results
of the fractional differential equations can help understanding complex phenomena in applied mathematics and physics.
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Introduction

Fractional derivative models can describe many
complex problems in physics and engineering more
correctly. Recently, fractional derivatives have been
used on applications in many area such as signal
processing, nonlinear optics, water wave modeling,
control theory and etc [1-3]. There are various
derivative definitions such as the Riemann -
Liouville derivative [3], the Caputo derivative [4],
Jumarie’s modified Riemann — Liouville derivative
[5] and the Atangana — Baleanu derivative [6] in
literature.

Numerous methods have been applied to obtain
different solutions of fractional partial differential
equations. Some of them are; the functional variable
method [7], the extended tanh function method [8],
the first integral method [9], the extended direct
algebraic method [10], the modified simple equation
method [11], the modified trial equation method [12],
the (G'/G) — expansion method [13], the extended
trial equation method [14], the kudryashov method
[15] and so on [16-25].

In this article, first integral method [26] and
functional variable method [27] have been applied to
reach the exact solutions of the conformable
fractional modified Camassa — Holm equation arising
in fluid dynamics. The time-fractional modified
Camassa — Holm equation of the following form [28]:
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Dffu is express of the conformable fractional
derivative of u with respect to ¢ of order a and g, 8
are non-zero constants.

The rest of article is given as follows: Some
definitions and properties of conformable derivative
are defined in section 2. In section 3, the proposed
methods are applied to the fractional modified
Camassa-Holm equation for obtaining some new
exact solutions in section 4. In section 5, a discussion
of the results is clarified. In final section, includes a
conclusion which contains all outputs in this article.

Conformable Fractional Derivative

Khalil et al. defined the below theorem for the
fractional derivatives [29]:

Let 4: [0,00) — R be a function and its fractional
conformable derivative of 4 order a is,

DE(R) (x) = lim,_o MEXEE)TC) )

&
o € (0,1) Vx>0.Some of important properties of
conformable derivative as follows:
Suppose a € (0,1] and g, h be a-differentiable at
a point >0. Then,
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T, (ag + bh) = aT, (g) + bT, (h) Va,b ER.
T, (k) = pkP~1 VpER.
T, (B) = 0, for all constant functions g(t) = .

T, (gh) =gT, (h) + hT, (g)
hTg (9)—9gTa (h)

g
Te (Z) g2
If g is differentiable, T, (g)(t) = t1~¢ % ().

First Integral Method

Introducing the wave transformation:

ta
r(i+a) 3)

u(x,t)=U&),§=x—k

Eqn. (1) reduce the form of eqn.(4) an ODE:

4Q _ deadx
df ~ dx dé

aQ ay
dy d&

Assume that m = 1 then coefficients of Y! (i=
0,1) in eqn.(40), we get:

d; (X) = a,(X). h(X) (®)
do(X) = ag(X).h(X) + a;(X).g(X)  (9)
a;(X). (2 X = £ x3) = a,(X). g(0). (10)

Since a;(X) are polynomials, a;(X) is constant
and h(X) = 0 from eqn.(41)

Take a, (X) = 1 and for the equilibrium of ay(X)
and g(X), deg(g(X)) =1.

Let (X) = Ay + A1 X , then

ao(X) = AoX +5A1X? + By,

(11
A, is integration constant. A nonlinear system of

algebraic equations are obtained from ay(X), g(X)
and eqn.(10).

u, (x,t) = Fk;éatanh(
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kU™ (@) + Qo — kU@ +5U3@) =0 @)

and then we can write two dimensional autonomous
system

ax
P Y($)
T=2xe)-Lx3) (5)

& k

According to first integral method, X and Y be a
non-trivial solutions of the eqn.(5). Also, irreducible
polynomial Q(X,Y) =¥ a;(X)Y' is exist in
C[X, Y] such that

Q(X(©),Y(®) =IPa; (XY (&) =0 (6)

where a,,(X) #0 and i = 0,1, ..., m. By division
theorem 3 a polyn. g(X) + h(X)Y such that

= (X)) + h(X)Y) I a;(X)Y", (7

4, = »Bo =

3k

/ Ap=0  (12)
-2 k—2
A1=_/3—,BO=_< k")/ BA0—0(13)

under the conditions given by egs. (12) and (13) in

eq. (6), we have;
20 | 3k 1 [-28
= 5,/3)(2(5)) (14)

using eq.(14) and eq. (5), eqn.(14) is converted to
following Ricatti equation:

Y ==

3k

U'() = +(=Z ZLy2ey)) (15)

the solutions of the modified fractional Camassa —
Holm equation is obtained as:

“ (= k——+&)) (16)

F(1+a)
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3k—60

according to functional variable method, we take

k
w(x,t) = = [P tanh( |22 (x = ks + o) (a7
3k—6
uz (x, 1) = / 27 coth (725 (= ks + 60)) (18)
3k—60 k
uy(x,0) = = [F5 coth ( (= ke + 0)) (19)
__ |-3k+60 k—20
usCe ) = [ tan( B2 (o~ ke £y)) (20)
—3Kk+6 k-2
ug(x,t) = — / “tan( |57 (= ket €0) 1)
—3k+6 k-2
u; (x,t) = / Zeot ([0 (x = kigym + &) (22)
3k+6 k-2
uy 6, 0) = = [P ot (22 (2~ i+ £0) (3)
Functional Variable Method (F2) = = 20=20), 283 25)
Introducing the wave transformation: k 3k
B B ra integrating the eqn. (25) ,we have
u ) =UE.§=x- ks ()
_ /_ﬁ / 2 _ 6(k=20)
Eqgn. (1) reduce the form of eqn.(4) an ordinary FQu) = ok U B (26)
differential equation:
from uz = F(u) and (26) we deduce that
kU™ () + 2o — kU@ + 503 =0 @)
. _ _E
el R DR

ug = F(u) and some successive derivatives of u(¢)
to following:

— 1 FZ !
uge =5 (F7)
1 144
ufff ZE(FZ) VFZ (24)
1 124 1 144 !
ugeee = 5 [(F2)"F? + 2 (F2)" (F?)'],

Thus we obtain,
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&o 1s a integration constant. After integrating (27),
we achieve the following exact solutions:

Case 1. If k = 20, then

: N (x kr(1+a) *+40)

6(k—20)

uy (x, t) = (28)

Case 2. f ————= > 0, then
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ug(x, t) = \/G(k;a) sec(\/zak_k (x—k A &) (29)

r(l+a)

uo(x, ) = — /@sec( 27K kom0 (30)

6(k-2 20—k t*
ull(x,t):\/ ( 5 a)csc(\/ ak (x— kr(1+a)

k- -k a
w0, 0) = = [ s 2 (- ko +60)) (32)

+$0)) (1)

6(k—-20)

Case 3. IfT < 0, then
w300 0) = [225sech( [*27 (x = kb + £0)) (33)
4 (0, 8) = = [*E5  sech( [0 (x = kertrs + £0)) (34)
ups(x, t) = /“%"”csch( L (x — kg + o) (35)
s 0) = = [ esch (1222 (2 kst ) (36)
Discussion

Figure 1 — 3D plots of the exact solution u3(x, t) and us(x, t)respectively, for the case of;
k=-223,6=-0.75 =207, a=041andk=0.85 6=-1.81, =-2.88, a = 0.3
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Figure 2 — 3D plots of the exact solution uq(x, t) and u,,(x, t) respectively, for the case of;
k=1.009,6=-1.17, =239, a=0.399and k=-1.55,6 =-3.4,=0.74, a = 0.4

Figure 3 — 3D plots of the exact solution u,3(x, t) and uy(x, t) respectively, for the case of;
k=048, 06=143 =239 a=044and k=127, 6=-1.86, =-2.08, o= 0.54

In this section, we have presented some
comparisons about physical behaviours. First method
gives us hyperbolic solutions and trigonometric
solutions (see Fig. 1-4); on the other hand, the second
one gives rational solutions, hyperbolic solutions and
periodic solutions. Compacton waves and kink
soliton waves have been achieved via first method,
compacton waves and bell-shaped soliton waves
have also been obtained via second method. Thanks
to these comparisons, we can have an idea about
physical interpretation of other nonlinear FPDEs.

Conclusion

In this study, thanks to FVM and FIM, we have
attained new exact solutions of the fractional
modified Camassa — Holm equation. The proposed
methods are powerful, reliable and effective to
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obtain nonlinear FPDEs defined by conformable
derivative. Main advantage of these methods is
generating more type of solution functions than the
other analytical methods. Trueness of solution
functions have also been proved by using the
Mathematica program. Additionally, some 3D
graphs have been examined for proper values of the
parameters. Obtained results and comparisons show
that methods will be useful to make the physical
interpretation of nonlinear FPDEs arising in applied
physics and mathematics.
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