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Structure of resonance states in the simple schematic model

Abstract. The complex scaling method is one of the powerful tool in wide areas of physics, 
particularly in nuclear physics. In the first stage, its advantage was mainly pointed out for description of 
the resonance states in the composite systems. In the last decide, the usage of this method has increased 
not only to obtain information on resonance states but also to determine scattering quantities in the 
observables. To determine the presence of many resonant states at the wave is not easy and complex 
scaling method can be used to determine the obtain many resonant states. The simple schematic two-body 
model is applied for study of many resonant states. Applying the complex scaling method, we can easily 
obtain several resonance states even with a wide and a sharp decay widths simultaneously. In this work, 
one bound and five resonance states for Jπ = 0+ wave and one bound and four resonance states for Jπ =
1− wave are reported.
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Introduction

Since the cluster structures of light nuclei are 
often observed as resonance states, it is important to 
develop the study of resonance states in multi-
cluster systems. In theoretical studies for light 
nuclei, the complex scaling method (CSM) is a 
useful tool to get information unbound states as well 
as bound states within the same treatment. The 
detailed information about the structure of light 
nuclei has been carried out using different methods, 
one of them is the CSM [1-2]. The complex scaling 
was first proposed mathematically and it has been 
widely used in all fields of physics, especially in 
resonance and scattering studies in nuclear physics.

In the first stage, its advantage was mainly 
pointed out for description of the resonance states in 
the composite systems. Developing the CSM to give 
us a possibility to obtain information of continuum 
and non-continuum states for three-, four-, and five 
body systems. In the last decade, the usage of this 
method has increased not only to obtain information 
on resonance states but also to determine scattering 
quantities in the observables [3-5]. Furthermore, to
understand structure of neutron rich nuclei, it is 
required to study structure of continuum and bound 
states as well. Recently, it has attracted much 
attention that the CSM has applied for observation 
of wide resonant and virtual states considering 
continuum states in light nuclei [6-10].

In this work, we apply the CSM to a simple 
schematic two-body model [8] for obtaining many 
resonance states. Applying the simple schematic 
potential for 𝐽𝐽𝐽𝐽𝜋𝜋𝜋𝜋 = 0+ and 1− waves, we calculate 
five resonance states in each waves. 

Method

We take up two-body systems, which are 
described by the Schrödinger equation

𝐻𝐻𝐻𝐻�|𝛹𝛹𝛹𝛹〉 = 𝐸𝐸𝐸𝐸|𝛹𝛹𝛹𝛹〉,

where the Hamiltonian H consists of kinetic energy 
T and potential V for the relative motion between 
two bodies. The eigenvalue problem is generally 
solved under a boundary condition of asymptotic 
outgoing waves for bound states and resonances. 
The outgoing boundary condition directly enables us 
to solve bound states in an L2 functional basis set 
because the states have negative energies and a 
damping behavior in the asymptotic region. 
Resonant states are unbound and defined as the 
eigenstates belonging to the complex eigenenergy, 
which corresponds to a complex momentum value 
in the lower half plane [3]. The resonant states 
cannot be solved in the L2 functional space due to 
asymptotically divergent behavior. Furthermore, 
continuum states of arbitrary positive energies 
cannot also be obtained under the outgoing 
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condition. The complex scaling has been introduced 
to solve resonant states within L2 basis functions and 
is defined by the following complex-dilatation 
transformation for relative coordinate r and 
momentum k is rewritten as 𝑟𝑟𝑟𝑟 ⟶ 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. Where θ is a 
scaling angle given by a real number and 0 < θ < 
θmax. The maximum value θmax is determined to keep 
analyticity of the transformed potential. For 
example, θmax = π/4 for a Gaussian potential. In a 
many-body system, this transformation makes every 
branch cut rotated by -2θ from the real axis on the 
complex energy plane. In the wedge region pinched 
by the rotated branch cut and the positive energy 
axis, resonance eigenstates are obtained by solving 
the following eigenvalue problem:

𝐻𝐻𝐻𝐻�(𝜃𝜃𝜃𝜃)|𝛹𝛹𝛹𝛹𝑖𝑖𝑖𝑖〉 = 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖|𝛹𝛹𝛹𝛹𝑖𝑖𝑖𝑖〉, (2)

𝛹𝛹𝛹𝛹𝑖𝑖𝑖𝑖 = ∑ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 , (3)

within an appropriate non-orthogonal L2 basis set 
{φi, i =1, 2, . . . ,N}. Where 𝐻𝐻𝐻𝐻�(𝜃𝜃𝜃𝜃) and 𝛹𝛹𝛹𝛹𝑖𝑖𝑖𝑖 are the 
complex scaled Hamiltonian and wave function, 
respectively. The bound states are obtained on the 
negative-energy axis independently from θ as well 
as the ordinary bound states. Because of a finite 
number of basis states, the continuum states are 
discretized with complex energies distributed on the 
rotated branch cut (2θ line).

The eigenvalues and eigenstates of the complex 
scaled Schrödinger equation (2) are classified as

[𝐸𝐸𝐸𝐸,𝛹𝛹𝛹𝛹𝑖𝑖𝑖𝑖] =

�
(𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏 ,𝛹𝛹𝛹𝛹𝑏𝑏𝑏𝑏)       𝑏𝑏𝑏𝑏 = 1,⋯ ,𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏;                                bound states 
(𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 ,𝛹𝛹𝛹𝛹𝑟𝑟𝑟𝑟)        𝑟𝑟𝑟𝑟 = 1,⋯ ,𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖;                           resonant states
(𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐(𝜃𝜃𝜃𝜃),𝛹𝛹𝛹𝛹𝑐𝑐𝑐𝑐)   𝑐𝑐𝑐𝑐 = 1,⋯ ,𝑁𝑁𝑁𝑁 −𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏 − 𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖;    continuum states

,

(4)

where 𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏 and 𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 are the number of bound states 
and the number of resonant states which depend on 
θ, respectively. The complex energies of resonant 
states are obtained as 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 − 𝑖𝑖𝑖𝑖𝛤𝛤𝛤𝛤𝑟𝑟𝑟𝑟/2, where 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 is 
resonance energy and 𝛤𝛤𝛤𝛤𝑟𝑟𝑟𝑟 is width of the resonant 
state. The discretized energies 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐(𝜃𝜃𝜃𝜃) of continuum 
states are θ dependent and expressed as 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐(𝜃𝜃𝜃𝜃) =
𝜖𝜖𝜖𝜖𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 − 𝑖𝑖𝑖𝑖𝜖𝜖𝜖𝜖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 .

These three-kind solutions of the complex-
scaled Schrödinger equation construct the extended 
completeness relation:

�|𝛹𝛹𝛹𝛹𝑏𝑏𝑏𝑏〉〈𝛹𝛹𝛹𝛹�𝑏𝑏𝑏𝑏|
𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏

𝑏𝑏𝑏𝑏=1

+

+∑ |𝛹𝛹𝛹𝛹𝑟𝑟𝑟𝑟〉 〈𝛹𝛹𝛹𝛹�𝑟𝑟𝑟𝑟| + ∫ 𝑑𝑑𝑑𝑑𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐|𝛹𝛹𝛹𝛹𝑐𝑐𝑐𝑐〉〈𝛹𝛹𝛹𝛹�𝑐𝑐𝑐𝑐| = 1𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐
𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟𝜃𝜃𝜃𝜃
𝑟𝑟𝑟𝑟=1 , (5)

where the tilde (˜) in bra states means the 
biorthogonal states with respect to the ket states due 
to non-Hermitian property of Hθ. The integration of 
the third term is taken along the rotated branch cut 
Lc. In the case of eigenstates within a finite number 
of L2 basis states, the integration for continuum 
states is approximated by the summation of 
discretized states as [6]

�|𝛹𝛹𝛹𝛹𝑏𝑏𝑏𝑏〉〈𝛹𝛹𝛹𝛹�𝑏𝑏𝑏𝑏|
𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏

𝑏𝑏𝑏𝑏=1

+

+∑ |𝛹𝛹𝛹𝛹𝑟𝑟𝑟𝑟〉 〈𝛹𝛹𝛹𝛹�𝑟𝑟𝑟𝑟| + ∑ |𝛹𝛹𝛹𝛹𝑐𝑐𝑐𝑐〉〈𝛹𝛹𝛹𝛹�𝑐𝑐𝑐𝑐| ≈ 1𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏−𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟𝜃𝜃𝜃𝜃
𝑐𝑐𝑐𝑐=1

𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟𝜃𝜃𝜃𝜃
𝑟𝑟𝑟𝑟=1 . (6)

It has been investigated that the reliability of the 
approximation of the continuum states are 
confirmed by using a sufficiently large basis number 
of N in the CSM [2].

Results and discussion

The Hamiltonian of the present model is given 
as

𝐻𝐻𝐻𝐻 = − ℏ2

2𝜇𝜇𝜇𝜇
∇2 + 𝑉𝑉𝑉𝑉(𝑟𝑟𝑟𝑟),                  (7)

where
𝑉𝑉𝑉𝑉(𝑟𝑟𝑟𝑟) = −8.0 exp(−0.16𝑟𝑟𝑟𝑟2) +

+4.0exp (−0.04𝑟𝑟𝑟𝑟2).                  (8)
For simplicity, we put ℏ

2

𝜇𝜇𝜇𝜇
= 1 (MeV fm2). This

potential introduced in Ref. [8] has an attractive 
pocket in a short range but a repulsive barrier at a 
large distance. To solve the Eq. (2), we employ the 
Gaussian basis functions given as

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖(�̂�𝑟𝑟𝑟) = 𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙(𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙 exp �− 1
2𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖

2 𝑟𝑟𝑟𝑟2� 𝑌𝑌𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(�̂�𝑟𝑟𝑟), (9)

where the range parameters are given by a 
geometric progression as 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑏𝑏0𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖−1 ,
𝑖𝑖𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁.

In this calculation, we apply 𝑁𝑁𝑁𝑁 = 20 and 
employ the optimal values of 𝑏𝑏𝑏𝑏0 and 𝛾𝛾𝛾𝛾 to obtain 
stationary resonance solutions. 
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Figure 1 – Schematic scenario of energy eigenvalues for
Jπ = 0+ wave on the complex energy plane. Here bound state 

is expressed as b. The resonant states are displayed r and 
indexes of r are corresponding the number of resonant states.

θ = 150 is applied as a scaling angle.

Figure 2 – Schematic scenario of energy eigenvalues for 
Jπ = 1− wave on the complex energy plane. 

The same analysis is performed as done in Fig.1.
θ = 200 is applied as a scaling angle.

In Figs. 1-2, the energy eigenvalue distributions 
on the complex energy plane for Jπ= 0+ and 1−waves
are shown. When we apply θ = 150 , we observe 
isolated energy points as shown in Fig.1. In Fig.1, 
we find one bound and five resonance states for 
Jπ = 0+ wave. The bound state is expressed as a 
red filled circle on the negative energy axis and it 
expressed as b. The resonant states are displayed by 
red filled circles and given by r and indexes of r are 
corresponding the number of resonant states. 

In Fig.2, we obtained one bound and four 
resonance states for Jπ = 1− wave by applying θ =
200. We calculate one bound and four resonance 
states for Jπ = 1− wave. In Fig. 2, the filled red 
circles are expressed bound and resonant states. The 

bound state is expressed b and obtained on the 
negative energy axis. r is implies the resonant states 
and its indexes are corresponding the number of 
resonant states. 

As can be seen from Figs. 1-2, energy 
eigenvalues are located on the 2θ lines except bound 
and resonance states. The resonant poles with 
narrow and wide decay widths appear above the 
threshold as shown with the filled red circles in 
Figs. 1-2. 

The results of the calculated resonance energies 
and widths for Jπ=0+ and 1− partial waves applying 
the schematic potential model are summarized in 
Table I. Table I contains the bound and resonance 
energies with decay widths at each partial waves. 

Table I – The calculated resonance energies and decay widths for Jπ= 0+ and 1− waves. 

0+ wave 1− wave
E (MeV) state E (MeV) state
-1.922782 bound -0.674647 bound

0.3101-i10-6 resonance 1.1710-i4.948x10-3 resonance
1.6322-i0.1228 resonance 2.0309-i4.8944x10-1 resonance
2.2493-i0.9367 resonance 2.8318-i1.7186 resonance
2.7667- i1.3169 resonance 3.7834-i2.5148 resonance
3.8433- i1.8445 resonance
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Conclusions

In this work we discussed many resonant states
for Jπ = 0+ and 1- waves applying a simple schematic 
potential, in the framework of the CSM to 
investigate the bound and unbound states. The 
present method is very useful to get structure 
information of many resonant states with bound 
state in the same manner. We calculated one bound 
and five resonance states for Jπ = 0+ wave and one 
bound and four resonance states for Jπ = 1− wave, 
respectively. For getting the structure of many 
resonant states give us a possibility to develop a 
method for determining a broad resonance state or a 
virtual state calculating scattering quantities using 
continuum and non-continuum states.
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