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Abstract. In this paper, the Lax-Wendroff difference scheme has been presented for solving the one-dimensional 
wave equation with integral boundary conditions. First, the given solution domain is discretized and the derivative 
involving the spatial variable x is replaced by the central finite difference approximation of functional values at each 
grid point by using Taylor series expansion. Then, for solving the resulting second-order linear ordinary differential 
equation, the displacement function is discretized in the direction of a temporal variable by using Taylor series 
expansion and the Lax-Wendroff difference scheme is developed, then it gives a system of algebraic equations. The 
derivative of the initial condition is also discretized by using the central finite difference method. Then the obtained 
system of algebraic equations is solved by the matrix inverse method. The stability and convergent analysis of the 
scheme are investigated. The established convergence of the scheme is further accelerated by applying the 
Richardson extrapolation which yields fourth-order convergent in spatial variable and sixth-order convergent in a 
temporal variable. To validate the applicability of the proposed method, three model examples are considered and 
solved for different values of the mesh sizes in both directions. Numerical results are presented in tables in terms of 
maximum absolute error, L� and L� norm. The numerical results presented in tables and graphs confirm that the 
approximate solution is in good agreement with the exact solution. 

Key words: Hyperbolic equation, one-dimensional wave equation, Lax-Wendroff difference scheme, Taylor 
series methods, Richardson extrapolation, stability, and convergence. 

 
 
Introduction 
 
The hyperbolic partial differential equation with 

an integral condition arises in many physical 
phenomena [10]. Over the last few years, it has 
become increasingly apparent that many physical 
phenomena can be described in terms of hyperbolic 
partial differential equations with an integral 
condition replacing the classic boundary condition 
[4]. These types of equation appear in a variety of 
physical problems such as in the study of 
thermoelasticity and plasma physics, and chemical 
heterogeneity [2, 4], acoustic waveguides [20], 
heterogeneous physical properties and/or complex 
geometry, seismology (study of earthquakes, 
regional and global seismology, accurate calculation 
of synthetic seismograms [23], water waves, sound 
waves, radio waves, light wave and seismic waves 
[14]. Hyperbolic partial differential equations play a 
very important role in modern applied mathematics 
due to their deep physical background. This 
hyperbolic differential equation subject to an 
integral conservation condition in one space 
dimensional, feature in the mathematical modeling 
of many phenomena [7]. It also arises in a broad 
spectrum of applications where wave motion is 

involved, for example; optics, acoustics, oil and gas 
dynamics, and vibrating string to name but a few 
[14]. Waves have distinct properties specific to their 
type but also exhibit characteristics in common with 
more abstract waves such as sound waves and light 
waves [6, 8, 3]. Seismic waves may be simulated by 
a viscous type of wave equation which is known to 
be difficult to obtain the analytical solution [14]. 
This is where the numerical solution to such types 
of equations is needed to solve practical problems, 
[14, 19].  

Due to the wide range of the application of the 
wave equation, several numerical methods have 
been developed. Even though many numerical 
methods were applied to solve these types of 
equations. Accordingly, more efficient and simpler 
numerical methods are required to solve wave 
equations. The FDM is becoming increasingly more 
important in the seismic industry and structural 
modeling due to its relative accuracy and 
computational efficiency [14]. Numerical modeling 
of wave propagation in the presence of surface 
topography requires the incorporation of non-flat 
boundaries. Embedding irregular boundaries into a 
finite-difference method is an old problem [11]. It 
can be avoided altogether with finite-element or 
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finite-volume or mesh-free methods, but usually at a 
higher computational cost. Given the existing, 
highly optimized finite-difference code base, a local 
modification of finite-difference stencils close to the 
irregular boundary is more attractive [9]. An 
obvious approach for dealing with topography is the 
introduction of an air layer. The extreme density 
contrast may require some smoothing to preserve 
stability [3, 12]. The presence of an airwave can be 
suppressed by setting the sound speed in the air 
equal to that at the surface, using constant 
extrapolation [9]. Again the numerical methods 
have been widely implemented to model acoustic 
and hydrodynamic waves [1]. This method of 
solving for the elastic wave eigenmodes in acoustic 
waveguides of an arbitrary cross-section is 
presented. Operating under the assumptions of 
linear, isotropic materials, it utilizes a finite-
difference method on a staggered grid to solve for 
the acoustic Eigenmodes (field and frequency) of 
the vector-field elastic wave equation with a given 
propagation constant [20].  

Therefore growing attention is being paid to the 
development; analysis and implementation of 
numerical methods for the solution of hyperbolic 
partial differential equations. Most of the 
researchers have studied the numerical solutions of 
the 1D wave equation. Shazalina et al [24] presented 
numerical techniques based Cubic Trigonometric B-
spline Approach solving the 1D wave equation. Ang 
[22] solved the same problem using a scheme based 
on an integrodifferential equation and local 
interpolating functions. Dehghan [21] presented 
numerical techniques based on the three-level 
explicit finite difference schemes for solving the 1D 
hyperbolic partial differential equation. He used 
three-level techniques are based on two second-
order (one explicit and one weighted) schemes and a 
fourth-order technique (a weighted explicit). Also. 
Saadatmandi [27] is developed the shifted Legendre 
Tau technique for the solution of the studied model. 
The approach in their work consists of reducing the 
problem to a set of algebraic equations by 
expanding the approximate solution as a shifted 
Legendre function with unknown coefficients. The 
integral and derivative operational matrices are 
given. These matrices together with the tau method 
are then utilized to evaluate the unknown 
coefficients of shifted Legendre functions. Mehdi 
Dehghan and Ali Shokri [10] are presented 
numerical techniques based on the mesh less  
 

schemes for solving the one-dimensional wave 
equation with an integral condition using radial 
basis functions. Wang et. al. [17] presented the 
solution of the one-dimensional wave Equation by 
using the Lagrangian meshfree finite difference 
particle method with variable smoothing length. 
Ang [22] developed a numerical technique based on 
an integrodifferential equation and local 
interpolating functions for solving the one-
dimensional wave equation subject to a nonlocal 
conservation condition and suitably prescribed 
initial boundary conditions. Ramezani et.al. [28] 
Combined finite difference and spectral methods to 
solve the one-dimensional wave equation with an 
integral condition. They used that the time variable 
is approximated using a finite difference scheme. 
But the spectral method is employed for discretizing 
the space variable. The main idea behind their 
approach is that high-order results can be obtained. 
Hikmet et.al [7] present a numerical solution of the 
One-dimensional wave equation with an Integral 
conservation condition is presented by the method 
of the non-polynomial cubic spline. Beilin [29] 
presented the existence and uniqueness of the 
solution of the one-dimensional wave equation with 
integral boundary conditions. Recently, much 
attention has been paid in the literature to the 
development, analysis, and implementation of 
accurate methods. 

However, still, the accuracy and stability of the 
method need attention because the treatment of the 
method used to solve one-dimensional wave 
equation is not trivial distribution. Even though the 
accuracy and stability of the aforementioned 
methods need attention, they require large memory 
and long computational time. So the treatments this 
method presents severe difficulties that have to be 
addressed to ensure the accuracy and stability of the 
solution. To this end, this paper aims to develop an 
accurate and stable Lax-Wendroff difference 
scheme with Richardson extrapolation numerical 
method that is capable of solving a one-dimensional 
wave equation with integral boundary conditions 
and approximate the exact solution. The 
convergence present method has been shown in the 
sense of maximum absolute error, 𝐿𝐿∞  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
So that the local behavior of the solution is captured 
and the agreement of numerical solution with the 
analytical solution is showed by table and graph. 
The consistency, stability, and convergent analysis 
of the present method are also established.  
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Statement of the problem 
 
Consider that the following linear one-

dimensional wave equation with integral boundary 
condition considered in [2, 5, 10, 16] given by: 

 
 𝑢𝑢�� � 𝑢𝑢�� � ��𝑥𝑥𝑥 𝑥𝑥�, �𝑥𝑥𝑥 𝑥𝑥� ∈ �𝑎𝑎𝑎 𝑎𝑎� � �0, 𝑇𝑇�   (1)  
 
with initial and boundary condition respectively  
 

𝑢𝑢�𝑥𝑥𝑥 𝑥� � 𝜔𝜔��𝑥𝑥�, 𝑢𝑢��𝑥𝑥𝑥 𝑥� � 𝜔𝜔��𝑥𝑥� 𝑥 𝑎𝑎 � 𝑥𝑥 � 𝑎𝑎, 
𝑢𝑢�𝑎𝑎𝑎𝑎𝑎 � � 𝜙𝜙��𝑡𝑡�, � 𝑢𝑢�𝑥𝑥𝑥 𝑥𝑥��

� � 𝜙𝜙��𝑡𝑡�, 
 0 � 𝑥𝑥 � 𝑇𝑇                                  (2) 

 
Where ��𝑥𝑥𝑥 𝑥𝑥�, 𝜔𝜔��𝑥𝑥�, 𝜔𝜔��𝑥𝑥� , 𝜙𝜙��𝑥𝑥) and 

𝜙𝜙��𝑥𝑥� are smooth function on�𝑎𝑎𝑎 𝑎𝑎� � �0, 𝑇𝑇�. Now 
we define a mesh size h and k and the constant grid 
point by drawing equidistance horizontal and 
vertical line of distance ‘ℎ’ and ‘𝑘𝑘𝑘 respectively in ‘𝑥𝑥’ 
and ‘𝑡𝑡’ direction. These lines are called gridlines and 
the point at which they interacting is known as the 
mesh point. The mesh point that lies at end of the 
domain is called the boundary point. The points that 
lie inside the region are called interiors points. The 
goal is to approximate the solution ‘𝑢𝑢� �’ at the 
interior mesh points. Hence we discretized the 
solution domain as: 

 
𝑎𝑎 � 𝑥𝑥� � 𝑥𝑥� � 𝑥𝑥� � � � 𝑥𝑥� � 𝑎𝑎 
 0 � 𝑥𝑥� � 𝑥𝑥� � 𝑥𝑥� � � � 𝑥𝑥� � 𝑇𝑇           (3)  

 
Where 𝑥𝑥��� � 𝑥𝑥� � �ℎ and 𝑡𝑡��� � 𝑥𝑥� � �𝑘𝑘, �

0�1�𝑀𝑀, � � 0�1�𝑁𝑁. 𝑀𝑀 and 𝑁𝑁 are the maximum 
numbers of grid points respectively in the x and t 
direction. 

Then the present paper is organized as follows. 
Section two is Methodology (Methods), section 
three is Stability and convergence analysis, section 
four is Numerical results. Section five is Discussion; 
section six is the conclusion of the present 
framework. 

 
Methods 
 
In this paper, the Lax-Wendroff difference 

scheme with Richardson extrapolation numerical 
method is developed to solve a one-dimensional 
wave equation with integral boundary conditions 
given in Eq. (1). Hyperbolic equations such as the 
wave equation in Eq. (1) have two derivatives in 
time and two in space. An initial condition (both 
function and its derivative) is required and boundary 

conditions on both sides of the domain. Contrast this 
with Laplace’s equation for the gravitational 
potential (∇.H = 0) which is an elliptic partial 
differential equation. In this case, conditions on the 
entire boundary are needed and specify the solution 
everywhere. Either the function or its derivative 
must be specified on each of the boundaries and 
changing the conditions at one point will change the 
solution everywhere. 

 
 Lax Wendorff Scheme 
 
A numerical technique was proposed in 1960 by 

P.D. Lax and B. Wendroff [30, 31, [32] for solving 
partial differential equations and systems 
numerically. Despite the impressive developments 
in numerical methods for partial differential 
equations from the 1970s onwards, in which the Lax 
Wendroff method has played a historic role, they are 
presently (1998) substantial research activities 
aimed at further improvements of methods [32]. Lax 
Wendroff’s method is also explicit but needs 
improvement in accuracy in time. This method is an 
example of explicit time integration where the 
function that defines governing equation is 
evaluated at the current time [32]. Purpose of this 
method to achieve good enough accuracy in time.  

Thus we apply Taylor series expansion for both 
spatial and time derivative of Eq. (1) to develop the 
present numerical method. Assuming that 𝑢𝑢�𝑥𝑥𝑥 𝑥𝑥� 
has continuous higher order partial derivative on the 
region �𝑎𝑎𝑥 𝑎𝑎�𝑥𝑥�0𝑥 𝑇𝑇�� For the sake of simplicity, we 
use 𝑢𝑢�𝑥𝑥�,𝑡𝑡 �� � 𝑢𝑢��, ���

��� � 𝜕𝜕�
�𝑢𝑢� � and ���

��� � 𝜕𝜕�
�𝑢𝑢� � 

for 𝑝𝑝 � 1 is 𝑝𝑝�� order derivatives.  
 
 Spatial Discretization 
 
By using Taylor series expansion, we have 
 

 𝑢𝑢��� � � 𝑢𝑢� � � ℎ𝜕𝜕�𝑢𝑢� � � 

� ℎ�
2! 𝜕𝜕��𝑢𝑢� � � ℎ�

3! 𝜕𝜕� � 𝑢𝑢� � � � 
𝑢𝑢��� � � 𝑢𝑢� � � ℎ𝜕𝜕�𝑢𝑢� � � 

� ��
�! 𝜕𝜕��𝑢𝑢� � � ��

�! 𝜕𝜕� � 𝑢𝑢� � � �            (4) 
 

Subtract the second equation from the first 
equation, and adding the first equation to the second 
equation of Eq.(4), respectively we obtain the 
central finite difference scheme of the first and 
second-order of 𝑢𝑢�𝑥𝑥𝑥 𝑥𝑥� concerning spatial variable 
given by: 



11Kedir Aliyi Koroche

International Journal of Mathematics and Physics 12, №2, 8 (2021)                                   Int. j. math. phys. (Online)

𝜕𝜕�𝑢𝑢� � 𝑢𝑢��� � 𝑢𝑢���
2ℎ � 𝜏𝜏� 

 𝜕𝜕��𝑢𝑢� � � �������� ������ �
�� � 𝜏𝜏�            (5) 

 
Where 𝜏𝜏� � � ��

� 𝜕𝜕��𝑢𝑢� � 𝜏𝜏� � � ��
�� 𝜕𝜕��𝑢𝑢� � are 

respectively their local truncation error terms. Now 
substituting the second equation of Eq. (5) into Eq. 
(1) we obtain the system of second-order ordinary 
differential equation in the temporal variable given 
in the form:  

 
 
������𝑎��

��� � �������� ������ �
ℎ� � 𝑞𝑞�𝑥𝑥�𝑎 𝑎𝑎� � 𝜏𝜏�     (6)  

 
Subject to the initial and boundary conditions 
 

𝑢𝑢�𝑥𝑥�𝑎 �� � 𝜔𝜔��𝑥𝑥��𝑎 �����𝑎��
�� � 𝜔𝜔��𝑥𝑥� 𝑎 𝑎𝑎 � 𝑥𝑥� � �, 

𝑢𝑢�𝑎𝑎𝑎 𝑎𝑎� � ���𝑎𝑎� , 
 � 𝑢𝑢�𝑥𝑥�𝑎 𝑎𝑎��

� � ���𝑎𝑎� 𝑎 � � 𝑎𝑎 � �                 (7) 

  
Temporal Discretization 
Since Lax Wendroff’s method is an explicit 

method that uses to improvement in accuracy in 
time. This method is an example of explicit time 
integration. So to discretize the derivative involve 
with the temporal variable and develop the lax 
Wendorff scheme, first we expand the functional 
value 𝒖𝒖��𝑎 𝒕𝒕 � �� � 𝒖𝒖𝒋𝒋 𝒏𝒏�� by using Taylor series 
expansion at ��𝒋𝒋, 𝒕𝒕𝒏𝒏�as follow: 
 

 𝑢𝑢� ��� � 𝑢𝑢� � � 𝑘𝑘𝜕𝜕�𝑢𝑢� � � 𝑘𝑘�
2! 𝜕𝜕��𝑢𝑢� � � 

� ��
�! 𝜕𝜕� �𝑢𝑢� � � ��

�! 𝜕𝜕� �𝑢𝑢� � � �                (8) 
 
Since the governing hyperbolic partial 

differential equation in (1) is 𝑢𝑢�� � 𝑢𝑢�� � 𝑞𝑞�𝑥𝑥𝑎 𝑎𝑎�. 
Then assuming that 𝑞𝑞�𝑥𝑥𝑥𝑥𝑥 � � �, and 𝑢𝑢�� � 𝑢𝑢�� , this 
implies that 𝑢𝑢� � 𝑢𝑢� .Thus by using this idea and 
truncating third-order derivative and above, from 
Eq. (8) we obtain: 

 
  𝑢𝑢� ��� � 𝑢𝑢� � � 𝑘𝑘𝜕𝜕�𝑢𝑢� � � ��

�! 𝜕𝜕��𝑢𝑢� � � 𝜏𝜏�     (9) 
 
where 𝜏𝜏� � ��

�! 𝜕𝜕� �𝑢𝑢� � is the local truncation of the 
expiation series. Now substituting the first equation 
of Eq. (5) and Eq.(6) into Eq.(9) we obtain,  
 
 

 𝑢𝑢� ��� � 𝑢𝑢� � � 𝛼𝛼�𝑢𝑢��� � 𝑢𝑢���� � 
�2𝛼𝛼��𝑢𝑢��� � 2𝑢𝑢� � � 𝑢𝑢��� �� � 𝐺𝐺� ��𝜏𝜏� �   (10) 

 
where 𝛼𝛼 � �

��,  𝐺𝐺� � � 2𝛼𝛼�𝑞𝑞�𝑥𝑥�,𝑡𝑡 �� and 𝜏𝜏� � �
𝛼𝛼𝛼𝛼� � 2𝛼𝛼�𝜏𝜏� � 𝜏𝜏� is local truncation error term of 
obtained difference equation for the full 
discretization of the one-dimensional hyperbolic 
partial differential equation given in (1). This local 
truncation error is: 
 

𝜏𝜏� � � ℎ� �� 𝛼𝛼
6 𝜕𝜕��𝑢𝑢� � � 𝛼𝛼�

6 𝜕𝜕��𝑢𝑢� �� � 

� ��
� 𝜕𝜕� �𝑢𝑢� � �  ��ℎ� � 𝑘𝑘��              (11) 

 
Thus the desired lax-Wendorff scheme that we 

use to solve second order linear one-dimensional 
wave equation in Eq.(1) is obtained by truncating 
the truncation error term 𝜏𝜏� �, from difference 
equation in Eq.(10), the scheme is: 

 
 𝑢𝑢� ��� � 𝑢𝑢� � � 𝛼𝛼�𝑢𝑢��� � � 𝑢𝑢��� �� � 
�2𝛼𝛼��𝑢𝑢��� � � 2𝑢𝑢� � � 𝑢𝑢��� �� � 𝐺𝐺� � 

 
Or  
 

 𝑢𝑢� ��� � 𝛼𝛼�� � 2𝛼𝛼�𝑢𝑢��� � � 
��� � �𝛼𝛼��𝜕𝜕� �𝑢𝑢� � � 𝛼𝛼�2𝛼𝛼 � ��𝑢𝑢��� � � 𝐺𝐺� � (12) 
 
with the order of accuracy is ��ℎ� � 𝑘𝑘��.  

 
Implementation of Initial Condition 
 
Since the initial condition in Eq. (7) is existing as 

the derivative in the temporal variable. so we 
discretize this initial condition by using central finite 
difference approximation for � � �. It is given by.  

 𝑢𝑢�𝑎� � 𝑢𝑢�𝑎��
2𝑘𝑘 � 𝜔𝜔��𝑥𝑥�� 

 𝑢𝑢���𝑎� � 𝑢𝑢�𝑎�� � 2𝑘𝑘𝜔𝜔��𝑥𝑥��           (13)  
 
In Eq.(13) both 𝑢𝑢���𝑎� and 𝑢𝑢�𝑎�� are unknown 

value. So it is difficult to use this discrete scheme of 
the initial condition. Therefore to use this discrete 
scheme we must avoid unknown old value 𝑢𝑢�𝑎�� from 
Eq. (13). To avoid this value let us substitute � � � 
into central finite difference discretization equation of 
one-dimensional wave equation in Eq. (1) we obtain: 
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𝑢𝑢�,� � 2𝑢𝑢�,� � 𝑢𝑢�,�� � 
����𝑢𝑢���,� � 2𝑢𝑢�,� � 𝑢𝑢���,�� � 𝑘𝑘���𝑥𝑥�, 𝑡𝑡��  (14) 

Now adding Eq.(13) into Eq.(14) and 
using 𝑢𝑢�𝑥𝑥�, �� � 𝑢𝑢�,� � 𝜔𝜔��𝑥𝑥�� we obtain : 

𝑢𝑢�,� � 𝜔𝜔��𝑥𝑥�� � 𝑘𝑘𝜔𝜔��𝑥𝑥�� � 
� ����� �𝜔𝜔��𝑥𝑥���� � 2𝜔𝜔��𝑥𝑥�� � 𝜔𝜔��𝑥𝑥����� � 

����𝑘𝑘���𝑥𝑥�, 𝑡𝑡��         (15) 

Hence the grid point at � � 1 and � � 1 are 
indicated the beyond of boundary grid point of the 
solution domain. Hence the scheme in Eq.(15) is 
only used the initial condition at the interior grind 
point, because due to the existence of boundary 
conditions in Eq.(7). Therefore by using the finite 
discrete scheme given in Eqs. (12) and (15) give the 
M-1 system of the equation that gives an accurate 

numerical solution of the one-dimensional wave 
equation given in Eq.(1) implicitly using the matrix 
inverse method.  

Richardson Extrapolation method 

Extrapolation is an extremely powerful tool 
available to numerical analysts for improving the 
performance of a wide variety of mathematical 
methods. It is an incredibly powerful technique for 
increasing speed and accuracy in various numerical 
tasks in scientific computing [33]. It is also used to 
speed up the rate of convergence for numerical 
methods.  

Theorem: Let 𝐷𝐷����ℎ, 𝑘𝑘� and 𝐷𝐷����2ℎ, 2𝑘𝑘� are 
two finite differences approximate value of the 
partial derivative of 𝑢𝑢�𝑥𝑥𝑥𝑥𝑥 � with an order of 
accuracy is Ο�ℎ�� � 𝑘𝑘��� such that for operator 
ℒ𝑢𝑢�𝑥𝑥�, 𝑡𝑡�� define as  

ℒ𝑢𝑢�𝑥𝑥�, 𝑡𝑡�� � 𝐷𝐷����ℎ, 𝑘𝑘� � 𝑐𝑐��ℎ�� � 𝑘𝑘��� � 𝑐𝑐��ℎ���� � 𝑘𝑘����� � 𝑐𝑐��ℎ���� � 𝑘𝑘����� � � 
ℒ𝑢𝑢�𝑥𝑥�, 𝑡𝑡�� � 𝐷𝐷����2ℎ, 2𝑘𝑘� � 2��𝑐𝑐��ℎ�� � 𝑘𝑘����2����𝑐𝑐��ℎ���� � 𝑘𝑘����� � �          (16) 

Where 𝑝𝑝 is the order of the differential equation. 
Then from the difference scheme in (16), we can 
drive the improved central finite difference scheme 
for the solution of the first-order partial derivative of 
𝑢𝑢�𝑥𝑥, 𝑡𝑡� at�𝑥𝑥�,  𝑡𝑡�) which is given by: 

�
ℒ𝑢𝑢�𝑥𝑥�, 𝑡𝑡 �� � 𝐷𝐷 ��ℎ, 𝑘𝑘� � Ο �ℎ���� � 𝑘𝑘 �����= 
4� 𝐷𝐷����ℎ, 𝑘𝑘� � 𝐷𝐷 ����2ℎ, 2𝑘𝑘�

4� � 1 � Ο�ℎ�� � 𝑘𝑘��� 

Thus from this general, the central finite 
difference approximation of second-order partial 
derivative of 𝑢𝑢�𝑥𝑥, 𝑡𝑡� at �𝑥𝑥�,  𝑡𝑡�) for � � � and � � � 
given by: 

ℒ𝑢𝑢�𝑥𝑥�, 𝑡𝑡�� � 𝐷𝐷��ℎ, 𝑘𝑘� � Ο�ℎ���� � 𝑘𝑘�����= 

� 𝑢𝑢�𝑥𝑥 � 2��ℎ, 𝑡𝑡� � 2𝑢𝑢�𝑥𝑥𝑥𝑥𝑥 � � 𝑢𝑢�𝑥𝑥 � 2��ℎ, 𝑡𝑡�
2 � 2��ℎ� � 

� ��� ,������������,������ ,�������
�������    (17) 

Until �𝐷𝐷��� � 𝐷𝐷�� � �𝐷𝐷� � 𝐷𝐷���� or �𝐷𝐷��� �
𝐷𝐷�� � 𝑡𝑡������𝑐𝑐� where tolerance is provided for 
𝑝𝑝 � 1�1�𝑁𝑁 with the order of accuracy is Ο�ℎ�� �
𝑘𝑘���. 

Now the truncation error terms of our 
formulated Lax-Wendorff scheme in Eq. (12) 
is Ο�ℎ� � 𝑘𝑘��. So the absolute error between two 
solutions at the grid point �𝑥𝑥�, 𝑡𝑡�� is satisfied: 

 �𝑢𝑢�𝑥𝑥�, 𝑡𝑡�� � 𝑢𝑢�,�� � 𝐂𝐂�ℎ� � 𝑘𝑘��          (18) 

where 𝑢𝑢�𝑥𝑥�, 𝑡𝑡�� and 𝑢𝑢�,� are respectively exact and 
numerical solution of one-dimensional wave 
equation given in Eq. (1) and 𝐂𝐂 is constant that 
independent from step length ‘ℎ’ and time step ‘ 𝑘𝑘.’  

Let us consider that Ω� � is the set of grid points 
that we obtain by using the mesh size h and k in Eq. 
(3). Consider that Eq.(18) work for any mesh size 
ℎ, 𝑘𝑘 � �, which implies that for �𝑥𝑥�, 𝑡𝑡�� � Ω� �: 

 𝑢𝑢�𝑥𝑥�, 𝑡𝑡�� � 𝑢𝑢�,� � 𝐂𝐂�ℎ� � 𝑘𝑘�� � ℛ�,�      (19) 

Where ℛ�,� is reminder term in this interval for 
which 𝑢𝑢�,� is approximated at each grid point Ω� � . 
Let  Ω�� �� is the set of grid point that obtained by 
bisecting each mesh point in  Ω� � and let 𝑢𝑢��,�� is 
approximated numerical value at each bisected grid 
point. Then, Eq.(18) also work for ℎ 2� , 𝑘𝑘 2� � �
which implies that:  
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 𝑢𝑢���, 𝑡𝑡�� � 𝑢𝑢��,�� � � ��ℎ��� � ��
���� � ℛ��,��  

�𝑢𝑢���, 𝑡𝑡�� � �𝑢𝑢��,�� � 
� ��𝜃ℎ� � 𝑘𝑘�� � �ℛ��,��             (20)  

 
Where ℛ��,�� is reminder term in this interval 

for which 𝑢𝑢��,�� is approximated at each grid points 
 Ω�� �� . Now subtracting Eq.(19) from Eq.(20) we 
obtain: 

 
7𝑢𝑢���, 𝑡𝑡�� � �𝑢𝑢��,�� � 𝑢𝑢�,� � � �𝟐𝟐 � � 

�𝑢𝑢���, 𝑡𝑡�������� � 1 7� ��𝑢𝑢��,�� � 𝑢𝑢�,�� � 

� 1 7� �� �𝟐𝟐 � �� 
 
Where � � �ℛ��,�� � ℛ�,� total reminder terms 

of two schemes. Negating the right-hand side terms 
of the above difference equation, we obtain:  

 
 𝑢𝑢�� � � 1 7� ��𝑢𝑢��,�� � 𝑢𝑢�,��              (20) 

 

Where 𝑢𝑢�� � � �𝑢𝑢���, 𝑡𝑡��������
 is also an appro-

ximation of the exact solution ���, 𝑡𝑡��. Therefore 
using the above theorem, the order of truncation error 
for the scheme in Eq. (20) is O�ℎ� � 𝑘𝑘��. Thus, the 
approximate solution in Eq. (20) is satisfies 

 
 

 �𝑢𝑢���, 𝑡𝑡�� � 𝑢𝑢�� �� � ��ℎ� � 𝑘𝑘��             (21) 
 
Thus the extrapolation method accelerates the 

convergence (accuracy) of the present method to 
approximate the exact solution with fourth-order in 
special variable six orders in the time variable. 

 
Stability and convergent Analysis 
 
Because hyperbolic equations often describe the 

motion and development of waves, Fourier analysis 
is of great value in studying the accuracy of 
methods as well as their stability [34]. The modulus 
of 𝜆𝜆�𝑘𝑘� describes the damping and the argument 
describes the dispersion in the scheme, i.e., the 
extent to which the wave speed varies with the 
frequency [34]. The Fourier analysis (Von-
Neumann) stability analysis technique is applied to 
investigate the stability of the proposed method. 
Such an approach has been used by many 
researchers like [15, 18, 25 26, 35]. Now assume 
that the solution of the given problem at the points 
���, 𝑡𝑡�� is 

  𝑢𝑢� � � 𝜆𝜆�𝑒𝑒���                      (22) 
 
Where � � √�1 ,𝜃𝜃 � 𝑘𝑘�𝜃�, 𝑘𝑘 𝑘 𝑘 and 𝜆𝜆 𝜆 𝜆 

which is ℝ set of a real number and ℂ set of a 
complex number. Substituting Eq. (22) into Eq. 
(12), we obtain:  

 
𝜆𝜆���𝑒𝑒��� � ��1 � 𝜃��𝜆𝜆�𝑒𝑒������� � �1 � ����𝜆𝜆�𝑒𝑒��� � ��𝜃� � 1�𝜆𝜆�𝑒𝑒������� � �� � 

𝜆𝜆 � ��1 � 𝜃��𝑒𝑒�� � �1 � ���� � ��𝜃� � 1�𝑒𝑒��� � �� � 
𝜆𝜆 � 1 � ��� � ��1 � 𝜃������𝜃𝜃 � ����𝜃𝜃� � ��𝜃� � 1�����𝜃𝜃 � ����𝜃𝜃� � �� � 

 𝜆𝜆 �𝑘𝑘� � 1 � ����1 � ���𝜃𝜃 � ��� �� � �𝜃����𝜃𝜃�                                             (23) 
 
 
Where � � 1𝜃𝜃� and 𝜆𝜆 �k� is an amplification 

factor of the proposed scheme. From this, we see 
that the modules of this amplification factor are less 
than one�| 𝜆𝜆 �𝑘𝑘�| � 1�. 

Theorem 1. Let Z has a power series expansion 
in the power of variable 𝛿𝛿 as follow 

 
𝑍𝑍 � ��𝛿𝛿 � ��𝛿𝛿� � ��𝛿𝛿� � ��𝛿𝛿� � � 

 
for 𝛿𝛿 𝛿 𝛿, then tan���𝑍𝑍� is equal to the power 
series expansion of Z, then Z lies in the unit circle. 

Proof: Let 𝑢𝑢�,� be the finite difference 
approximation of first-order partial differential 
equation obtained by using the finite discrete 
scheme of the form: 

𝑢𝑢� ��� � 𝑢𝑢� � � �∆�𝑢𝑢� � 
 
where ∆� indicate backward difference operator 
and � � ∆�𝜃∆𝑡𝑡. Then the Von Neumann stability 
analysis gives  
 

𝑍𝑍�𝑘𝑘� � 1 � ��1 � 𝑒𝑒��� � 
� 1 � ��1 � ���𝜃𝜃 � ����𝜃𝜃� 

 
 �𝑍𝑍�𝑘𝑘��� � 1 � ���1 � �� sin��𝜃𝜃𝜃𝜃� 

 
Thus from this for all ‘k’ and 𝛿 � � � 1 we 

have |𝑍𝑍�𝑘𝑘�| � 1. Hence the argument of 
amplification factor 𝑍𝑍�𝑘𝑘� is defined by  
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������𝑘𝑘�� � ��𝛼�� � 𝛼𝛼 𝛼𝛼𝛼�𝜃𝜃�
1 � 𝛼𝛼�1 � ���𝜃𝜃�� � 

� �𝛼𝛼𝜃𝜃�1 � 1�6�1 � 𝛼𝛼���𝜃𝜃� � � 

Hence the theorem is proved. Now using the 
idea of this theorem, the arguments of the 
amplification factor in Eq.(23) is 

��� ����𝜆𝜆 �𝑘𝑘�� � ��𝛼�� � 2𝛼𝛼𝛼𝛼𝛼 �𝜃𝜃�
1 � 4𝛼𝛼��1 � ���𝜃𝜃 � 𝛽𝛽𝛽𝛽� ���

� ��𝛼�� �
2𝛼𝛼 �1 � θ�

2 � θ�
24 � θ�

720 � � �
1 � 4𝛼𝛼� � 4𝛼𝛼� �𝜃𝜃 � 𝜃𝜃�

6 � 𝜃𝜃�
120 � 𝜃𝜃�

5040 � � � � 4𝛼𝛼�𝛽𝛽𝛽𝛽� �
� 

≅
2𝛼𝛼 �1 � θ�

2 � θ�
24 � θ�

720 � � �
1 � 4𝛼𝛼� � 4𝛼𝛼� �𝜃𝜃 � 𝜃𝜃�

6 � 𝜃𝜃�
120 � 𝜃𝜃�

5040 � � � � 4𝛼𝛼�𝛽𝛽𝛽𝛽� �

� 7𝛼𝛼�720 � 360θ� � 30θ� � θ� � � �
2520 � 2𝛼𝛼�5040 � 5040𝜃𝜃 � �40𝜃𝜃� � 42𝜃𝜃� � 𝜃𝜃� � � � � 4𝛼𝛼�𝛽𝛽𝛽𝛽� �

 

Since 0 � 𝛼𝛼 � 𝑘𝑘�ℎ � 1 and 𝜃𝜃 � 𝑘𝑘��𝑁𝑁. Hence 
for 𝑘𝑘 𝑘 𝑘, 𝜃𝜃 𝜃𝜃 . still, we have seen that |𝜆𝜆 �𝑘𝑘�| �
1. Thus 𝜆𝜆 �𝑘𝑘� are lies inside the unit circle.
Therefore, the lax-Wendorff finite difference 
scheme given in Eq. (12) is stable for the wave 
equation. 

Theorem 2: The difference equation given in 
the form of Eq.(12) is stable if for which the 
eigenvalues of the coefficient matrix of the system 
of the differential equation are satisfied �����𝜆𝜆�� �
0. Proof: See reference [15]

 Since from the principal part of the local 
truncation error, the derived local truncation error 
for the proposed scheme is  

𝜏𝜏� � � ℎ� �� 𝛼𝛼
6 𝜕𝜕��𝑢𝑢� � � 𝛼𝛼�

6 𝜕𝜕��𝑢𝑢� �� � 

� 𝑘𝑘�
6 𝜕𝜕� �𝑢𝑢� � �  ��ℎ� � 𝑘𝑘�� 

 Thus, 𝜏𝜏� � → 0 as ℎ, 𝑘𝑘 𝑘 𝑘. So that, the scheme 
is consistent with the order of. Hence the scheme is 
convergent.  

Criteria for Investigating the Accuracy of the 
Method 

This section presented the criteria that the 
accuracy of the present method is investigated. 
Since there are two types, Round-off errors and 
Truncation errors occur when differential equations 
are solved numerically. Rounding errors originate 

from the fact that computers can only represent 
numbers using a fixed and limited number of 
significant figures. Thus, such numbers or cannot be 
represented exactly in computer memory. The 
discrepancy introduced by this limitation is to call a 
Round-off error. Truncation errors in numerical 
analysis arise when approximations are used to 
estimate some quantity. The accuracy of the solution 
will depend on how small we make the step size, h, 
and time step k. To test the performance of the 
proposed method, maximum absolute error, 𝐿𝐿� and 
𝐿𝐿� norms are used to measure the accuracy of the 
method. These norms are calculated by: 

𝐿𝐿� � ���������𝑢𝑢��� , 𝑡𝑡�� � 𝑢𝑢� �� ,  

𝐿𝐿� � �1
𝑁𝑁 ��𝑢𝑢��� , 𝑡𝑡�� � 𝑢𝑢� ���

�

���

where 𝑀𝑀 is the maximum number of step, 𝑢𝑢��� , 𝑡𝑡�� 
is the exact solution and 𝑢𝑢� � approximation solution 
of the wave equation in Eq.(1) at the grid point 
��� , 𝑡𝑡��. 

Results 

To test the validity of the proposed method, we 
have considered the following three model problem 
considered in [2, 5, 10, 16]. Numerical results and 
errors are computed and the outcomes are 
represented tabular and graphically. 

� � 

≅

�
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Example 1: consider the classical wave 
equation considered in [2, 5] 

 
𝑢𝑢�� � 𝑢𝑢�� , �𝑥𝑥𝑥 𝑥𝑥� ∈ �0,1� � �0, 𝑇𝑇� 

 
Subjected to initial and boundary condition 
 
 𝑢𝑢�𝑥𝑥𝑥𝑥 � � ��s�𝜋𝜋𝜋𝜋� , 𝑢𝑢��𝑥𝑥𝑥𝑥 � � 0 , 0 � 𝑥𝑥 � 1 ,  

𝑢𝑢�0, 𝑡𝑡� � ��s�𝑡𝑡� , � 𝑢𝑢�𝑥𝑥𝑥 𝑥𝑥��𝑥𝑥 � 0 ,
�

�
 0 � 𝑥𝑥 � 𝑇𝑇 

An analytical solution is 𝑢𝑢�𝑥𝑥𝑥 𝑥𝑥� �
�
� ���s�𝜋𝜋�𝑥𝑥 � 𝑥𝑥�� � ��s�𝜋𝜋�𝑥𝑥 � 𝑥𝑥��� 

Example 2: consider the wave equation 
considered in [5] 

𝑢𝑢�� � 𝑢𝑢�� � �𝜋𝜋� � 1
4 𝑒𝑒�� �� � sin �𝜋𝜋𝑥𝑥�, �𝑥𝑥𝑥 𝑥𝑥�

∈ �0,1� � �0, 𝑇𝑇� 
 
Subjected to initial and boundary condition 
𝑢𝑢�𝑥𝑥𝑥𝑥 � � sin�𝜋𝜋𝜋𝜋� , 𝑢𝑢��𝑥𝑥𝑥𝑥 � � 1 2�  sin�𝜋𝜋𝜋𝜋�, 

 0 � 𝑥𝑥 � 1, 
 

𝑢𝑢�0, 𝑡𝑡� � ��s�𝜋𝜋𝜋𝜋� , � 𝑢𝑢�𝑥𝑥𝑥 𝑥𝑥��𝑥𝑥 � 2
𝜋𝜋 𝑒𝑒�� ��  ,

�

�
 

 0 � 𝑥𝑥 � 𝑇𝑇 
 
An analytical solution is 𝑢𝑢�𝑥𝑥𝑥 𝑥𝑥� �

𝑒𝑒�� ��  sin �𝜋𝜋𝑥𝑥�  
 
Example 3: consider the wave equation 

considered in [2] 
 

𝑢𝑢�� � 𝑢𝑢�� � 2𝑥𝑥 � 6𝑥𝑥 � 2 , �𝑥𝑥𝑥 𝑥𝑥� ∈ �0,1� � �0, 𝑇𝑇� 
 
Subjected to initial and boundary condition 
 
𝑢𝑢�𝑥𝑥𝑥𝑥 � � 𝑥𝑥�, 𝑢𝑢��𝑥𝑥𝑥𝑥 � � 𝑥𝑥 � 𝑥𝑥�, 0 � 𝑥𝑥 � 1, 

𝑢𝑢�0, 𝑡𝑡� � �𝑥𝑥�, � 𝑢𝑢�𝑥𝑥𝑥 𝑥𝑥��𝑥𝑥 � �𝑥𝑥� � 𝑡𝑡
6 � 1 4� ,

�

�
 

0 � 𝑥𝑥 � 𝑇𝑇 
 
An analytical solution is 𝑢𝑢�𝑥𝑥𝑥 𝑥𝑥� �

�𝑥𝑥� � 𝑥𝑥� �𝑥𝑥 � 𝑥𝑥�  
 

Table 1 – Comparison of pointwise absolute error for problem give in example one with computations carried out until final time  
T = 5 with mesh size h=0.01 and k=0.1. 

 
x By the previous method

Goh Joan et.al.[16] S. M. Zin. et.al. [5] 
By the present method maximum 

absolute error 
0.2 1.21E-04 1.12E-04 1.7865E-04 
0.3 1.15E-04 1.07E-04 1.6803e-05 
0.4 6.88E-05 6.40E-05 1.436E-05 
0.5 2.03E-13 5.05E-15 4.5452EE-15 
0.6 6.88E-05 6.40E-05 2.0236E-05 
0.7 1.15E-04 1.07E-04 1.7205E-05 
0.8 1.21E-04 1.12E-04 3.1439E-05 
0.9 7.97E-05 7.39E-05 3.1214E-05 

 

 
Figure 1: Surface graphs of example 1 showing the physical behavior  

of the one-dimensional wave equation when � � 0�02 and � � 0�1 
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Figure 2 – The physical behavior of the solution for example one  
for Comparison of the Approximate and Exact solution 

 

Figure 3 – The physical behavior of Absolute error  
for solution of example one when and  
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Table 2 – Comparison of maximum pointwise absolute error for problem give in example two with computations carried out until 
final time T = 1 with mesh size h=0.01 and k=0.0001. 
 

t My previous method By present method
Maximum abs. Error Meghan [10] S. M. Zin. et.al. [5]

0.5 1.3371E-03 3.9515E-05 1.7005E-05
1 2.3794E-03 2.008E-04 4.1897E-06
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Figure 6 – The physical behavior of Absolute error  
for example two when � � �������and�� � ����� 
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Figure 7 – Surface graphs of example 3 showing the physical behavior  

of the one-dimensional wave equation when and  
 

 
Figure 8 – The physical behavior of the solution for example 3 for Comparison  
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Figure 9 – Graph representation for Absolute error of example three  

when ℎ � 𝑘�𝑘��� and 𝑘𝑘 � 𝑘�𝑘� 
 
 
Desiccations 
 
In this paper, the Lax-Wendorff difference 

scheme with the Richardson extrapolation method is 
presented for solving a one-dimensional wave 
equation subjected to integral conditions. To 
demonstrate the competence of the method, three 
model examples are solved by taking different 
values for step size h, and time step k. Numerical 
results obtained by the present method have been 
associated with numerical results obtained by the 
method in [2, 5, 10, 16] and the results are 
summarized in Tables and graph. Moreover, the 
maximum absolute errors decrease rapidly as the 
number of mesh points M and N increases. Further, 
as shown in Figs. 2, 5, and 8 the proposed method 
approximates the exact solution very well for 
different values of step length ℎ and time step 𝑘𝑘 as 
given above for which most of the current methods 
fail to give good results. To further verify the 
applicability of the planned method, graphs were 
plotted aimed at Examples 1, 2, and 3 for exact 
solutions versus the numerical solutions obtained. 
As Figs. 1, 2, 4, 5, 7, and 8 indicate good agreement 
of the results, presenting exact as well as numerical 
solutions, which proves the reliability of the 

method. Also, Figs. 3, 6, and 9 specify the absolute 
error of obtained numerical solution by the effects 
of mesh sizes on the solution domain. Further, the 
numerical results presented in this paper validate the 
improvement of the proposed method over some of 
the existing methods described in the literature. 
Both the theoretical and numerical error bounds 
have been established. Hence, the Richardson 
extrapolation method accelerates second-order into 
fourth-order convergent in spatial variable and third-
order into sixth-order convergent in the temporal 
variable. The results in Tables 1, 2, and 3 further 
confirmed that the computational rate of 
convergence and theoretical estimates are in 
agreement.  

As it can also be seen from table 3 when the 
value of ℎ is decreased with fixed time step 𝑘𝑘, the 
maximum absolute error and 𝐿𝐿�-norm also 
decreased the accuracy of the proposed method 
increase. But for 𝑘𝑘 𝑘 𝑘 with fixed step size ℎ both 
maximum absolute error and 𝐿𝐿�-norm also 
increases. So that accuracy of the proposed method 
decreases. It concludes that the smaller value of ℎ 
and with fixed time step 𝑘𝑘 gives a better 
approximation to the exact solution. However 
decreasing both the value of step size ℎ and time 
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step k, affects the accuracy of the present method 
that developed this paper. Comparison among Table 
1-Table 3 and the graphs of the numerical and exact 
solution of 1D wave equation shows that the present 
method generates a more accurate result and it is 
superior to the method developed in [5 ,10, 16] and 
It is approximate the exact solution very well.  

 
Conclusion  
 
A new approach, lax-Wendorff difference 

scheme with Richardson extrapolation method is 
using to solve 1D wave equation numerically is 
presented in this study. The comparison of the 
results obtained by the present method with other 
methods reveals that the present method is more 
convenient, reliable, and effective. An error analysis 
based on the Fourier series is also developed in this 
study. As it can be seen that, the accuracy improves 
when 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 are increased. Tables and figures 
indicate that as ℎ decreases with a fixed value of 𝑘𝑘 , 
the errors decrease more rapidly. Another conside-
rable advantage of the method is that the Richardson 
extrapolation techniques are well approximate and 
give better accuracy of the numerical solution using 
bisected grid point in the domain and searching 
accurate solution and improve the performance of 
methods. In a summary, the lax-Wendorff difference 
scheme with the Richardson extrapolation method is 
a reliable method that is capable to solve the one-
dimensional wave equation. Based on the findings, 
this method is well approximate and gives better 
accuracy of the numerical solution with a fixed time 
step, 𝑘𝑘𝑘 and smaller step size ℎ. 
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