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TWO PHASE SPHERICAL STEFAN INVERSE PROBLEM SOLUTION
WITH LINEAR COMBINATION OF RADIAL HEAT POLYNOMIALS
AND INTEGRAL ERROR FUNCTIONS IN ELECTRICAL CONTACT PROCESS

Abstract. In this research the inverse Stefan problem in spherical model where heat flux has to be
determined is considered. This work is continuing of our research in electrical engineering that when heat
flux passes through one material to the another material at the point where they contact heat distribution

process takes the place. At free boundary () contact spot starts to boiling and at () stars to melting

and there appear two phase: liquid phase and solid phase. Our aim to calculate temperature in liquid and
solid phase, then find heat flux entering into contact spot. The exact solution of problem represented in
linear combination of series for radial heat polynomials and integral error functions. The recurrent formulas
for determine unknown coefficients are represented. The effectiveness of method is checked by test
problem and approximate problem in which exact solution and approximate solution of heat flux is
compared. The coefficients of heat at liquid and solid phases and heat flux are found. The heat flux equation
is checked by testing problem by using Mathcad program.

Key words: Stefan problem, radial heat polynomials, Faa-di Bruno, collocation method.

Introduction

Heat flux entering in electrical contact materials
from electrical arc distributes radially and axially.
Spherical model is most convenient, introduced by
Holm R. [1], in the problem of heat distribution in
electrical materials. In this problem generalized heat
equation can be used. The generalized heat equation
of the form

00 , 1 6( ) 86}
_:al —_— v —
ot r’ ox ox

have the fundamental solution with delta-function
containing initial condition by using Laplace
transform can be represented as

C =2 Xy
G, y,t)=—(xy) e * I | =|,
(x,y,1) 2t(y) ﬂ(ztj
where

i ZVT_I’ C, =2"T(B+1)
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We can consider the heat potentials related to this
solution in form [2]

0, (x,1)= 2’”F(ﬁ+1)’1J‘G(x,y,;)y2"+vdy

and by using integration by parts method we have the
following explicit formula of heat polynomials

_Npu DB
Qn,v(x,f)—g;z k\(n—k)\T(B+1+n—k)

For applications it is convenient to multiply both
T(Bf+1+n)

sides of this equation by
rp+1

and we get the

following solution

\ ! 2(nk) 1k
Q,,‘,(x,t):Z22k n‘r(ﬂ‘f'l'i‘n)x t
: = kK n—k)\T(B+1+n—k)

which satisfy the generalized heat equation.
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In this research we consider v =2 which allow to
transform to generalized heat equation to spherical
heat equation [3]. The similar problems are
considered in [4]-[7].

Mathematical model

Let us consider the liquid phase described in
domain «(f)<r< (), t>0and solid phase in

B(t) <r <o, t >0 with spherical heat equations
%:aizég(ﬁ%], i=1,2 (1)
Ot rtor\_ or
and each phase has initial condition as follows
6,(a(),0)=0, a(0)=A(t)=0, )
0,(r,0)= f(r), f(0)=6,. 3)

Heat flux entering P(r) into spherical domain
from electrical arc with radius s, in process pf heat

transfer within electrical contact materials can be
determined from condition

2980 _pg, @)
or

r=n

Temperatures in liquid and solid phase at free
boundary a(¢) is equal to melting temperature

0,(p(1).)=0,, i=12. (5)

Motion of the free boundary can be calculated at
Stefan’s condition

I BT
Or |_pe) or |, dt
and temperature of solid zone at infinity turns to zero

g, =0. @)

Problem solution

The solution of problem (1)-(7) we represent as
linear combination of series for radial heat equation
and integral error functions
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The equations (8) and (9) satisfy heat equation (1)
and undetermined coefficients 4,,B,,C, and D, have

to be founded to determine temperatures in phases.
The function at initial condition for &,(r,7) is

represented in expansion by Maclaurin series

f(r):iLfo)r" and free boundaries can be
n=0 n:

considered in power series a(f)=Y a,"*" and

n=0

ﬁ(z)zi p¢*" . Heat flux which have to be

determined from condition (4) can be written in
P(t)=p,+pt"” + pt+pt”..=) pt".
n=0

At first, we must find temperatures in liquid and
solid zones, then by using property of integral error
function to condition (3) we get

TR - 2 L= f"0)
ZC”I’ +ZDnml’ —ZTI’ (10)

n=0 n=0 n=0

By comparing the power of » in both sides (10)
we obtain the following form

c+p—2 /"0 (11)
Qn+)l . (2n)!

and from conditions (5) we have
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_2%n! F(% + nj L)y
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and from Stefan’s condition we obtain
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Firstly, we take /-th derivative both sides of (13) (l 2k D! 4 z [ erfe(v,) = erfe(v, )] « (18)
when 7 =0using Leibniz rule for first and second (I =2k =)o ol
term of (13) Z‘ b\b,!..b
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o SAErT as)
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Using Faa-di Bruno for (15) and (16) we get
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From system of equations (11) and (13) we
determine the coefficients C,,D,. Multiplying both

sides of (13) by B(r) we have

22k n!l"(3+ n)ﬂ(z.)z(nk)ﬂ z_zk
oS 2
pe - .
w0 k=0 kl(n—k)'r(2+n—kJ

+Zm: D (2a,7)"" (iz’”1 erfe(-u(r)) — iz””eifc(u(z'))) =
=0,5(7),

Taking [-th derivative both sides of this
expression and using (10) we have

_@n+D)[0,8112m)- 1" (0)5,, ]
. 202m)',,

. (19)
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Multiplying A(z) both sides of (12) and (14) we
where have
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where §'(r)B(r) =~ 5'(x) an VB = L k=MbY (D), m21
Vs (T):i‘/( B).7", v(B), =B, Taking /-th derivative both sides of equations
= (21) and (22) at 7 =0 we get
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and
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From recurrent equations (23) and (24) we can +22 6 513,
K -

determined the coefficients 4, and B as free 0 Bl-Bn : PN
. A = mHl n'lni ,B _ nil (25)
boundary is known. "
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From condition at heat flux entering we have the following equation
2 2 <2n+1 2n+l 2 1 B -2n 2n
-4 {Z [ %( erfe(—p(r) — " erfe(p(r))) - %(z erfe(—p(r)+i erfc(w(r)))j +
, n2“nﬂ{§+n]ﬂﬁ—k} ) (26)
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Multiplying both sides by «’(z) we obtain the next equation
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Analogously, taking /-th derivative of both sides of equation (27) we have
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From recurrent equation (28) we can determine
the coefficients of heat flux in process of electrical
contact materials.

Exact solution of test problem

In this section we consider test problem to check
effectiveness of method of radial heat polynomials
and integral error functions for inverse problem of
spherical Stefan problem (1)-(7). The free boundaries
are given in the form a(t)=a,~t and B(t)= B,
then from the initial condition (3) and boundary
condition (6) we have

A )

C +D, 29)
Qn+)! (2n)!

2 n!l“(; + nJZ(n -k)p"

k!(n—k)!r[zm—kj

n
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—-a2>ey
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o2 n!l"(; + njﬂoz‘”“t"

C, 3 +
n=0 k=0
k!(n—k)!l"(2+n—kj (30)
ZD (2a) ( 2+l VfC_—ﬁO 2””erfc ﬁ ngm’
2q, 2a,
2k 3 2(n—k) 4n
B o2 n'lC E+n Bt
>4 I
n=0 k=0
k!(n—k)!F(2+n—k) 3D

2 2n+1 _
ZB ( a ) 2n+l rf‘cﬁ_ihwlerfcﬂ — 0,,1,
2a 2a,

n=0 )
and from Stefan s condition at free boundary A(¢) we
obtain

t —ZB (24, \[) (zz”erfc A, +i2”erfcﬁ] _

ﬁo +2n (32)

)

ZD a1y [zz”erfc

n=0

+(4, /1)6?+ ﬂo

For n=0 from system of equations (28)-(29) we
have

A

C =70~ (33)
;0 (l erfc Zﬁz —i'erfc 2";2 j—l
D0 — Hm —f(O) (34)
el
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and from system of equations (30)-(31) we obtain

o (1 e ”03’7[0%]“/12 )0, +
B, = 24 24, 27" (35)
A (l erfc 2'310 +i erfcf;J
2a -B, B
4=6.-B"% (z e o ] (36)

For n>1 we have the following results
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Using this result and put in (29) we can find coefficient C, directly. And for other coefficients we get

5 5 . 2“11!F(§+nj2(n—k)ﬁoz(”)
A | D,(2a,)" | i*erfc—"""+i"erfc " |- C,
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A, =-B, A 1 & (39) Heat flux can be determined form condition (3)
2“}1!1"(; + n] B which takes the form
= k!(n—k)!l”(§+n—kj
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1
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aOO 2 1 n=0

Then from expression (40) we obtain the coefficients of heat flux passes through liquid and solid phases
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2
p,=-4|42a,-B, (2a ‘) Serfe—L lefc ( @)’ rfc +lerfc—
a,’ Za1 a, a, 2a,
| 2
p, =-A| 4,(4a,’ +40a,) - B, (24 ‘) Perfe—2 —iserfc& +( @)’ iferfe—"+i erfc—
a, 2a, 2a, ) 2al 2a,
- oy B
ps =-4 | A, (6a, +168c,’ +840a,)— B, (Lz) Verfe =20 — {Terfe 20 |+ @a) i‘e rfc Ot ferfe2o
) a, 2a, 2a, a, a, 2a,

2% (n+1IT [; + n] 2(n—k+1)a, "

(41)

i+l
yZe :_11 An+lz
k=0

k!(n—k+1)!r(§+n—kj

and even indexed coefficients of heat flux p», = 0. By
using Mathcad 15 and taking
a=a,=L=y=q,=f=4=21,=1 and  melting

temperature 6, we get exact values of first three
coefficients of temperature in two phase
A=B=C=D=C=D,=0 and 4, =C,=-1574x10",
B, =D, =9.442x10" are calculated from system of
equations (33)-(39). Then first three coefficients of

heat flux is po = p1 = 0 and p, = 0.057 which can be
found from (41).

Approximate solution of test problem
In this section we consider collocation method that

useful to engineers for testing and we try to show that by
using three points =0, #=0.5 and = 1 we can obtain no

0.06

exact P(t) 0.04

approx_ P(t)

0
0 02 04 06 038
t

Figure 1 — Graphs of approximate and
exact heat flux functions
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aO 1 al

(2 )2»14—2
a

+

—
2n+zer © 0 2n+2er C_
[ T 2a, f 2a, jﬂ

error estimates. Let a; =a>=L=y=1 and 6,,=0, then for
calculation Mathcad 15 is used and we get the next
approximate coefficients for temperature in liquid and
solid zones Ao = 4).25, Bo = 0.125, A1 = Bl = Cl = D1 =
Co:D()IO andA2= sz— 1.574 x 104, BzID2=9.442
x 107, Then approximate values of first three heat flux is
similar to exact values. The Fig.1 shows the graphs of
approximate heat flux (approx P(t)) and exact heat flux
(exact_P(t)).

By calculating relative error with Mathcad 15 we
get Fig.2 in which we can see that that at each point
t=20,¢t=0.5 ¢t=1 we have zero error estimate
function (Err(t))

Then we can summarize that method radial heat
polynomials and integral error functions is the most
effective in the heat transfer problem appearing in
electrical contact process.

0

0.4

0.2

Err(t) 0
-0.2

-04

0 02 04

t
Figure 2 — Graph of relative error function

0.6 0.8
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Conclusion

The new method radial heat polynomials is
introduced and is used for testing heat process in two
phases when heat flux passes through these two
zones. The coefficients of temperatures 6,(r,¢) and
0,(r,t) are determined from recurrent formulas (19),
(20) and (25), then by using these coefficients and
comparing degree of time from condition (3) heat
flux is described. To testing effectiveness of radial
heat polynomials and integral error function test
problem is considered in which free boundaries are
represented in self-similar form a(¢) = aoxﬁ and

p@) = ,BO\/; which are convenient for testing and

with approximation method (collocation method)
checked the error estimates between exact solution
and approximate solution of this inverse problem.
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