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LATTICE- BOLTZMANN METHOD
FOR SIMULATING TWO-COMPONENT FLUID FLOWS

Abstract. In this work, a model of binary fluids with different densities and viscosities based on the solution 
of the Navier-Stokes equations, the continuity and the Cahn-Hilliard equation is developed. The process of 
influence of surface tension and interface thickness on the phase fields of fluids is investigated. The 
numerical results of the study are obtained on the basis of a phase field model using the lattice Boltzmann 
method (LBM). The LME uses two sets of distribution functions for incompressible flow: one for tracking 
the pressure and velocity fields and the other for the phase field. The use of the pressure distribution function 
can significantly reduce the effect of numerical errors in calculating the interfacial force. A several 2D tests 
are carried out to demonstrate the validation, which included droplet problem and the Raleigh- Taylor 
instability. It is shown that the proposed method allows tracking the interface with high accuracy and 
stability.
Key words: phase field, binary fluid, surface tension, chemical potential, lattice Boltzmann method.

Introduction

Numerical modeling of multiphase fluid flows 
plays an important role in solving many applied 
scientific and engineering problems, including, for 
example, oil and gas production, chemical processing 
of raw materials, and steam-water mixture flows in 
boilers and condensers. In recent years, more and 
more attention has been paid to such problems due to 
their importance for the development of digital 
microfluid and the development of the laboratory of 
liquid crystals, gels, suspensions, and also some other 
technologies. Thus, the study of multiphase fluid 
flows is an urgent task today.

Interface tracking is widely used in two-phase 
flow models, which can be divided into two 
categories: sharp interface methods such as volume-
of-fluid methods, level-sets and front-tracking 
methods, diffuse interface methods. The diffuse 
interface approach [1] has some advantages over the 
others in terms of maintaining mass conservation and 
in the ability of resolving interface curvature with 
higher accuracy. The main idea of diffuse interface 
models is to replace sharp interfaces with transition 
regions of a thin but nonzero layer of thickness, 
where density, viscosity and other physical quantities 
smoothly change from the values of one fluid to the 
values of another.

Among diffuse interface methods, the phase field 
method [4-5] has become a widely used method in 

traditional computational fluid dynamics (CFD) and 
lattice Boltzmann equations (LBM) methods for 
numerical investigation of complex interphase 
dynamics. In the phase field method, the 
thermodynamic behavior of liquids is expressed 
using the free energy functional of the continuous 
order parameter [2], which acts as a phase field to 
distinguish between two-phase fluids. The phase 
separation equation is formulated for the order 
parameter that defines the Cahn-Hilliard equation
[13].

The concept of a diffuse interface was first 
proposed by [7], but it has gained popularity only 
in recent years as a tool for the numerical 
simulation of two-phase flows. There are many 
works on the study of multiphase models using 
various numerical methods [9-12]. The motion of 
a two-dimensional droplet using a stepwise 
wettability gradient (WG) was studied in [3].
Also, the diffuse boundary method for simulating
the phase separation of complex viscoelastic 
fluids was investigated in [6] and a model of a 
binary fluid with free energy for the three-
dimensional Bretherton problem (flow between 
parallel plates) performed in [8]. All of these 
works have a different modeling approach for 
boundary tracking and phase separation of liquids 
with different densities and viscosities. The main 
difference between these works is the choice of 
methods for numerical implementation.
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In this paper, we introduce multiphase flow 
model for incompressible binary fluids, when 
interface between the different phases is tracked by 
LBE. To simulate phase interface, we derive free-
energy based phase field method. To distinguish 
transition between different phases we set order of 
parameter 𝜙𝜙𝜙𝜙. Also we obtain the numerical 
implementation of influence surface tension force (𝜎𝜎𝜎𝜎)
and interface thickness (𝑊𝑊𝑊𝑊) on the phase field.

Statement of the problem

To check the numerical algorithm, the results 
obtained within the framework of solving this 
problem were compared with the results obtained 
experimentally, which showed good agreement.

A mixture of two immiscible incompressible 
fluid in a rectangular region Ω with densities 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴,𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵
and dynamic viscosity 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴,𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵 is considered (Figure 
1). For the computational domain, a two-dimensional 

rectangle with the corresponding dimensional para-
meters was taken: 𝑥𝑥𝑥𝑥 ∈ [0,1], 𝑦𝑦𝑦𝑦 ∈ [0,1]. In the center 
of the area 𝑥𝑥𝑥𝑥 ∈ [0.2, 0.8] ,𝑦𝑦𝑦𝑦 ∈ [0.4, 0.6] is situated a
liquid drop with density 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴 and viscosity 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴.

To distinguish the two different fluids, the order 
of parameter (phase field function) is introduced

𝜙𝜙𝜙𝜙 = �
𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴,   𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 А
𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵 ,   𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 В

For a system of binary fluids, the Landau free 
energy function 𝐹𝐹𝐹𝐹 can be defined on the basis of 𝜙𝜙𝜙𝜙
as:

𝐹𝐹𝐹𝐹(𝜙𝜙𝜙𝜙,∇𝜙𝜙𝜙𝜙) = ∫𝑉𝑉𝑉𝑉[Ψ(𝜙𝜙𝜙𝜙) +
𝑘𝑘𝑘𝑘
2

|∇𝜙𝜙𝜙𝜙|2]𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑

where Ψ(𝜙𝜙𝜙𝜙) –the bulk free energy density, for an 
isothermal system the following form can be used
Ψ(𝜙𝜙𝜙𝜙) = 𝛽𝛽𝛽𝛽(𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴)2(𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵)2, 𝑘𝑘𝑘𝑘 – is the 
coefficient of surface tension, 𝛽𝛽𝛽𝛽 – is the coefficient 
depending on the interface thickness and the surface 
tension force.

Figure 1 – Computational domain of bubble immersed in liquid

The basic equations for the phase field consist 
of the continuity equation, the momentum 

equation for the mixture and the covective Cahn-
Hillart equation:

𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

+
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

= 0

𝜌𝜌𝜌𝜌(
𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

) = −
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

− 𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

+ 𝜂𝜂𝜂𝜂 �
𝜕𝜕𝜕𝜕2𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

+
𝜕𝜕𝜕𝜕2𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2

�

𝜌𝜌𝜌𝜌(
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

) = −
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

− 𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

+ 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜂𝜂𝜂𝜂 �
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

+
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2

�

H

L

𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵
𝜙𝜙𝜙𝜙А

Ω
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𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕(𝜙𝜙𝜙𝜙𝑓𝑓𝑓𝑓)
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

+
𝜕𝜕𝜕𝜕(𝜙𝜙𝜙𝜙𝜕𝜕𝜕𝜕)
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

= 𝑀𝑀𝑀𝑀(
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2

+
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦2

)

where u,v – are the velocity components, 𝑝𝑝𝑝𝑝 – is the 
pressure, 𝜌𝜌𝜌𝜌 = 𝜙𝜙𝜙𝜙−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵

𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵
𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴 + 𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙

𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵
𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵  – is the density,

here 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴,𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵 – are the density of fluids, 𝜂𝜂𝜂𝜂 =
𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵(𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵)

(𝜙𝜙𝜙𝜙−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵)𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵+(𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙)𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴
, here 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴 = 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴𝜗𝜗𝜗𝜗𝐴𝐴𝐴𝐴, 𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵 = 𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵𝜗𝜗𝜗𝜗𝐵𝐵𝐵𝐵 –

are the dynamic viscosity, 𝜗𝜗𝜗𝜗𝐴𝐴𝐴𝐴,𝜗𝜗𝜗𝜗𝐵𝐵𝐵𝐵 – are the kinematic 
viscosity, 𝜙𝜙𝜙𝜙 −  is the phase field function ,𝜌𝜌𝜌𝜌 – is
the acceleration of gravity, 𝑀𝑀𝑀𝑀 – is the mobility 
coefficient, 𝜕𝜕𝜕𝜕- is the chemical potential, 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥 = −𝜙𝜙𝜙𝜙 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥
,

𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦 = −𝜙𝜙𝜙𝜙 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

are the surface tension force, 𝐹𝐹𝐹𝐹𝑏𝑏𝑏𝑏 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 is 
the acceleration force.

The variation of the free- energy function F with 
respect to the function 𝜙𝜙𝜙𝜙 is solving chemical potential 
μ as :

𝜕𝜕𝜕𝜕 =
𝛿𝛿𝛿𝛿𝐹𝐹𝐹𝐹
𝛿𝛿𝛿𝛿𝜙𝜙𝜙𝜙

=
𝑓𝑓𝑓𝑓Ψ
𝑓𝑓𝑓𝑓𝜙𝜙𝜙𝜙

− 𝑘𝑘𝑘𝑘∇2𝜙𝜙𝜙𝜙 =

= 4𝛽𝛽𝛽𝛽(𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴)(𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵)(𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴+𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵
2

) − 𝑘𝑘𝑘𝑘∇2𝜙𝜙𝜙𝜙 ,

where 𝑊𝑊𝑊𝑊 = 1
|𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵|�

8𝑘𝑘𝑘𝑘
𝛽𝛽𝛽𝛽

- is the interface thickness, 

𝜎𝜎𝜎𝜎 = |𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴−𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵|3

6 �2𝑘𝑘𝑘𝑘𝛽𝛽𝛽𝛽 – is the surface tension force.
The system of equations has the following initial

and boundary conditions:

𝑓𝑓𝑓𝑓 = 0, 𝜕𝜕𝜕𝜕 = 0,𝜙𝜙𝜙𝜙 =

= � 𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴,   𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 ∉ Ω
𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵, 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 ∈ Ω  𝑎𝑎𝑎𝑎𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 = 0, 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝐿𝐿𝐿𝐿, 0 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝐻𝐻𝐻𝐻

𝑓𝑓𝑓𝑓 = 0, 𝜕𝜕𝜕𝜕 = 0,
𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

=
= 0  𝑎𝑎𝑎𝑎𝜕𝜕𝜕𝜕 𝑥𝑥𝑥𝑥 = 0 и 𝑥𝑥𝑥𝑥 = 𝐿𝐿𝐿𝐿 , 0 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝐻𝐻𝐻𝐻

𝑓𝑓𝑓𝑓 = 0, 𝜕𝜕𝜕𝜕 = 0,
𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

= 0 𝑎𝑎𝑎𝑎𝜕𝜕𝜕𝜕 𝑦𝑦𝑦𝑦 = 0 

и 𝑦𝑦𝑦𝑦 = 𝐻𝐻𝐻𝐻, 0 ≤ 𝑥𝑥𝑥𝑥 ≤ 𝐿𝐿𝐿𝐿

Numerical method

We use the lattice Boltzmann equation (LBE) to
describe the motion of binary fluids. For this case, the
collision term LBM in a two-dimensional square
lattice with nine velocities (D2Q9) was used. The
lattice Boltzmann equation in the Batnagar-Gross-
Krook (BGK) [15] approximation is as follows:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖Δ𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) − 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =

= −�
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) − 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)
𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓

� + (1 −
Δ𝜕𝜕𝜕𝜕
2𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓

)𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)Δ𝜕𝜕𝜕𝜕

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖Δ𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) − 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) =

= −�
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) − 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)
𝜏𝜏𝜏𝜏𝜙𝜙𝜙𝜙

� +

+Γ[𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖Δ𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕) − 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)]

where 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ,𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 – are the velocity and phase field
distribution function respectively, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖- is a discrete
lattice velocity, 𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓 , 𝜏𝜏𝜏𝜏𝜙𝜙𝜙𝜙- are the relaxation time for the
velocity and phase field respectively, 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖- is a force
term, Γ = 2𝜏𝜏𝜏𝜏𝜙𝜙𝜙𝜙 − 1 constant controlling the mobility,

t∆ - is a time step, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 – are the equilibrium
distribution function for the velocity and phase field
respectively.

The equilibrium distribution functions are
introduced as following:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

=

⎩
⎪
⎨

⎪
⎧ −(1 −𝑤𝑤𝑤𝑤0)

𝑝𝑝𝑝𝑝
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
− 𝑤𝑤𝑤𝑤0

𝑓𝑓𝑓𝑓 ∙ 𝑓𝑓𝑓𝑓
2𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

 , 𝑓𝑓𝑓𝑓 = 0

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝 + 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 �
𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑓𝑓
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

+
(𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑓𝑓)2

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠4
−
𝑓𝑓𝑓𝑓2

2𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
� , 𝑓𝑓𝑓𝑓 ≠ 0

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧𝜙𝜙𝜙𝜙 −

(1 − 𝑤𝑤𝑤𝑤0)Γ𝜕𝜕𝜕𝜕
(1 − Γ)𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

 , 𝑓𝑓𝑓𝑓 = 0

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖
Γ𝜕𝜕𝜕𝜕 + (𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓)𝜙𝜙𝜙𝜙

(1 − Γ)𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2
 , 𝑓𝑓𝑓𝑓 ≠ 0

where 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 = 1
3

- is a lattice sound speed, 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2𝜌𝜌𝜌𝜌 +

𝛽𝛽𝛽𝛽(−1
2
𝜙𝜙𝜙𝜙2 + 3

4
𝜙𝜙𝜙𝜙4) - is a pressure of a mixture.

For the D2Q9 model, discrete velocities are 
calculated as:

𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 = (0,1,1,0,−1,−1,−1,0,1)𝑐𝑐𝑐𝑐

𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 = (0,0,1,1,1,0,−1,−1,−1)𝑐𝑐𝑐𝑐
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The values of the weighting parameters are 
defined as:

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

4
9

               𝑓𝑓𝑓𝑓 = 0

1
9

       𝑓𝑓𝑓𝑓 = 1,2,3,4

1
36

         𝑓𝑓𝑓𝑓 = 5,6,7,8

In this paper, the scheme proposed by Guo et al.
[14] is used to approximate the external force in the
LBM:

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = �1 −
1

2𝜏𝜏𝜏𝜏
�𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 �3

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

+ 9
𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠4

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖� 𝐹𝐹𝐹𝐹

where, 𝐹𝐹𝐹𝐹 = (𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦 + 𝐹𝐹𝐹𝐹𝑏𝑏𝑏𝑏)
The evolution equation is divided into two steps,

collision and propagation:

1. 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖∗(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) − Δ𝑡𝑡𝑡𝑡
𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓
�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) −

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)� + (1 − Δ𝑡𝑡𝑡𝑡

2𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓
)𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)Δ𝜕𝜕𝜕𝜕

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖Δ𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) = 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖∗(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)
2. 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖∗(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) = 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) − 𝑡𝑡𝑡𝑡

𝜏𝜏𝜏𝜏𝜙𝜙𝜙𝜙
(𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕) −

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕))

3. 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖Δ𝜕𝜕𝜕𝜕, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) = 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖∗(𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕)

After the second step, we update the macroscopic 
parameters (density, phase field, velocity) using the 
following formulas:

𝜌𝜌𝜌𝜌 = ∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜌𝜌𝜌𝜌𝑓𝑓𝑓𝑓𝛼𝛼𝛼𝛼 = ∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝛼𝛼𝛼𝛼 + 𝐹𝐹𝐹𝐹∆𝑡𝑡𝑡𝑡
2

,𝑖𝑖𝑖𝑖 𝜙𝜙𝜙𝜙 = ∑ 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

The following boundary conditions were used to
close the system of equations.

Zero velocity condition for all walls:

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) = 𝑓𝑓𝑓𝑓−𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕),
𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ∙ 𝑛𝑛𝑛𝑛 > 0,

Neumann condition for phase filed on all walls:

𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕) = 𝜌𝜌𝜌𝜌−𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑤𝑤𝑤𝑤, 𝜕𝜕𝜕𝜕 + Δ𝜕𝜕𝜕𝜕),
 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 ∙ 𝑛𝑛𝑛𝑛 > 0,

Numerical results and discussions

First we performance, the numerical calculations
of problem where, a stationary droplet immersed in
another fluid. This task is used to assess the capability
of the proposed model in handling the surface force.
Initially, a round drop with a radius of 20 (in lattice
units) is placed in the center of a square
computational domain with a size of 100x100.

Table 1 – Modeling parameters

Parameters Physical parameters LBM parameters
Characteristic length 𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.01

Number of points by 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 𝑁𝑁𝑁𝑁𝑥𝑥𝑥𝑥 ×  𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦 = 128 × 256

Kinematic viscosity 𝜗𝜗𝜗𝜗 =
𝜂𝜂𝜂𝜂
𝜌𝜌𝜌𝜌 𝜗𝜗𝜗𝜗 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2(𝜏𝜏𝜏𝜏 −

1
2)
∆х2

Δ𝜕𝜕𝜕𝜕

Characteristic time 𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �
𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝐴𝐴𝐴𝐴𝜕𝜕𝜕𝜕
𝜏𝜏𝜏𝜏 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2(𝜏𝜏𝜏𝜏 −

1
2)
∆х2

𝜗𝜗𝜗𝜗

Maximum velocity 𝑈𝑈𝑈𝑈𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0,31305 𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙 = 𝑈𝑈𝑈𝑈𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢

, 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 = Δ𝑥𝑥𝑥𝑥
Δ𝑡𝑡𝑡𝑡

Mixture density 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 800,  𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 600 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴 =
𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
,𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵 =

𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Dynamic viscosities of fluids 𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐵𝐵𝐵𝐵 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.02, 𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.01 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴 = 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜂𝜂𝜂𝜂𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵 = 𝜂𝜂𝜂𝜂𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜂𝜂𝜂𝜂𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Model parameters are set as: 𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓 = 𝜏𝜏𝜏𝜏𝜙𝜙𝜙𝜙 = 1,𝜙𝜙𝜙𝜙𝐴𝐴𝐴𝐴 =
1,𝜙𝜙𝜙𝜙𝐵𝐵𝐵𝐵 = −1,𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴 = 1,𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵 = 0.7. The basic
dimensionless parameters for the droplet problem are
shown in table 1.

The time step was taken ∆𝜕𝜕𝜕𝜕 = 0.0001 seconds.
In numerical simulation, when interface width𝑊𝑊𝑊𝑊 and

the surface tension σ are given, the coefficients 𝑘𝑘𝑘𝑘 and
𝛽𝛽𝛽𝛽 can be determined as follows:

𝑘𝑘𝑘𝑘 = 3𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎
8

,𝛽𝛽𝛽𝛽 = 3𝜎𝜎𝜎𝜎
4𝜎𝜎𝜎𝜎



36 Lattice-Boltzmann Method for Simulating Two-Component Fluid Flows

Int. j. math. phys. (Online)                                   International Journal of Mathematics and Physics 11, №2, 32 (2020)

The numerical solution showed that with 
decrease the coefficient  𝜎𝜎𝜎𝜎 of surface tension, leads to 

decrease a chemical tension of the phases, as shown 
in Figure 2.

t= 0 t= 1.3

Figure 2 – The dynamics of the change in the shape of a drop in a fluid at different time
for 𝜎𝜎𝜎𝜎 = 0,01,𝑊𝑊𝑊𝑊 = 1. The time normalized by characteristic time 𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

t= 0 t= 1.3

Figure 3 – The dynamics of the change in the shape of a drop in a fluid
at different time for  𝜎𝜎𝜎𝜎 = 0,001,𝑊𝑊𝑊𝑊 = 1. The time normalized by characteristic time 𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Figure 3 shows when surface tension 𝜎𝜎𝜎𝜎 is 
decrease , the force of surface attraction decreases 
and the shape of the drop does not change. In 
addition, with an increase interface thickness 
coefficient 𝑊𝑊𝑊𝑊, the surface tension 𝛽𝛽𝛽𝛽 decreases, which 
contributes to a more rapid formation of a ball-like
shape, as shown in Figure 4.

To further demonstrate the ability of this model 
to solve more complex flows, we simulated the 
Rayleigh-Taylor instability, which occurs when there 
is a small disturbance at the interface between a 
heavy (fluid A) and a light fluid (fluid B).

The basic dimensionless parameters for the 
Rayleigh-Taylor instability problem are shown in 
table 1. The initial interface between the two fluids is 
shown in Figure 5 (t=0). Reflection boundary 
conditions are applied to the lower and upper 
boundaries, and periodic boundary conditions are 
applied to the side boundaries. In our simulations, the 
physical parameters are fixed as:

𝑈𝑈𝑈𝑈𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.04, 𝑊𝑊𝑊𝑊 = 4, 𝜎𝜎𝜎𝜎 = 0.1,

 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒 = 𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝑈𝑈𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜂𝜂𝜂𝜂 𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

, 𝐴𝐴𝐴𝐴𝜕𝜕𝜕𝜕 = 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵.𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= 0.1
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t= 0 t= 1.3

Figure 4 – The dynamics of the change in the shape 
of a drop in a fluid at different time for   𝜎𝜎𝜎𝜎 = 0,01,𝑊𝑊𝑊𝑊 = 4

t=0 t=0.4 t=0.5

t=0.7 t=0.8 t=0.9

Figure 5 – Dynamics of concentration separation in the fluid phase at different times
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In the early stages, the growth of the fluid
interface remains symmetrical up and down. Later, 
the heavy liquid settles down, and the light fluid rises, 
forming bubbles. Starting from t = 0.4 (Fig. 5), the 
heavy fluid begins to curl up into two oncoming 
vortices. These discontinuities disappear over time, 
as at t = 0.7 , the Rayleigh-Taylor instability appears. 
At t = 0.9 , it can be seen that the heavy fluid has 
completely settled, and the light fluid has gone up. 
Thus, the problem of the Rayleigh-Taylor instability 
describes well the process of settling of a heavy fluid.

The problem was also solved for the case when
𝐴𝐴𝐴𝐴𝜕𝜕𝜕𝜕 = 0.1428, 𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓 = 0.8, 𝜎𝜎𝜎𝜎 = 0, 01, 𝑊𝑊𝑊𝑊 = 2. Below in 
Figures 6- 8 the simulation result is shown, which 
illustrates the dynamics of concentration separation 
of a mixture of heavy and light liquids at different 

times: Figure 6 - for times t = 0; 0.2; 0; 32; 0.36 (from 
left to right, respectively); Figure 7 - t = 0.4; 0.5; 0.56; 
0.6 (left to right, respectively); Figure 8 - t = 0.64; 
0.72; 0.74; 0.8 (left to right, respectively). It can be 
seen from the figures that for the case when a more 
viscous liquid is considered (the separation boundary 
of the mixture components is thinner), a slower 
process of establishing equilibrium is observed - over 
time, first the formation of vortices occurs, then a 
rupture of the interface of the liquid boundaries is 
observed, the formation of separate structures of a 
fluid of higher density occurs inside a fluid of lower 
density, the formation of bubbles, the boundary of 
which breaks over time, equilibrium is established 
due to the chemical velocity of attraction of the 
phases.

Figure 6 – Dynamics of concentration separation 
in the fluid phase at different times
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Figure 7 – Dynamics of concentration separation in the fluid phase at different times

Figure 8 – Dynamics of concentration separation in the fluid phase at different times
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Thus, a mathematical model has been developed 
for the separation of components of binary fluids with 
different density and viscosity. A 2D numerical 
algorithm based on the D2Q9 model of the lattice 
Boltzmann method to simulate a multiphase flow of 
an incompressible fluid in a bounded rectangular 
cavity is developed. For incompressible flow, two 
sets of distribution functions are used: one for 
tracking the pressure and velocity fields, and the 
other for the phase field. The use of the pressure 
distribution function makes it possible to 
significantly reduce the effect of numerical errors in 
calculating the interfacial force. Numerical modeling 
was carried out for the two-dimensional Rayleigh -
Taylor instability and for the fluid droplet problem. 
The main conclusion of this problem can be 
considered the following: if the thickness interface 
between two immiscible fluids is large, then spherical 
drops appear faster than in the case when the 
boundary is thin. In addition, by implementation of 
the developed mathematical model, the process of 
mass transfer of two fluids of different density and 
viscosity in a given area is clearly shown. 
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