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FINITE DOMAIN STRUCTURES IN THE FRAMEWORK 
OF THE CONCEPT OF A MODEL-THEORETIC PROPERTY

Abstract. In this work, we follow the algebraic approach using definability by formulas presentable in both 
existential and universal forms. The class of algebraic Cartesian interpretations of theories is studied 
presenting a foundation of the finitary first-order combinatorics. Common properties of first-order 
definability in finite models are studied. Some relations are obtained between automorphism groups of 
finite models and isomorphisms of Cartesian extensions of their theories. A formal definition of the notion
of a model-theoretic property is analyzed based on a separate consideration of cases of theories with finite 
and infinite models. A description of model-theoretic properties defined via finite domains is found. It is 
established that the class of all finite models with first-order definable elements as well as the corresponding 
class of theories of such models forms the only model-theoretic property and, therefore, is of little interest 
as a database with an interface based on the first-order logic language.
Key words: first-order logic, Cartesian extension of a theory, Tarski-Lindenbaum algebra, model-theoretic 
property, computable isomorphism. 

Introduction

We use the radical approach in model theory 
counting that model-theoretic properties are classes 
of complete theories, cf. [1]. By specification [2], a 
class 𝔭𝔭𝔭𝔭 of complete theories is a real model-theoretic 
property (corresponding to the common practice of 
investigations in model theory), if 𝔭𝔭𝔭𝔭 is closed under 
algebraic isomorphisms of theories as well as under 
Cartesian extensions and inverse passages in the 
operation of a Cartesian extension of a theory. A 
preliminary motivation to the possibility of a formal 
definition for the concept of a model-theoretic 
property is considered in [3], while the work [2] 
describes a final version of this definition. Some 
applications of the definition of a model-theoretic 
property are contained in [4].

In this work, structure of real model-theoretic 
properties is studied based on a separate 
consideration of the cases of complete theories with 
finite and infinite models. Based on this, we give an 
application concerning finite models.

Preliminaries

We consider theories in first-order predicate logic
with equality and use general concepts of model 
theory, algorithm theory, constructive models, and 
Boolean algebras found in [5], [6], and [7]. Special 
concepts used in the works are defined in [3]. 

Generally, incomplete theories are considered. In the 
work, the signatures are considered only, which 
admit Godel's numberings of the formulas. Such a 
signature is called enumerable. 

By 𝐿𝐿𝐿𝐿(𝑇𝑇𝑇𝑇), we denote the Tarski-Lindenbaum 
algebra of formulas of theory 𝑇𝑇𝑇𝑇 without free 
variables, while ℒ(𝑇𝑇𝑇𝑇) denotes the Tarski-
Lindenbaum algebra 𝐿𝐿𝐿𝐿(𝑇𝑇𝑇𝑇) considered together with a 
Gödel numbering 𝛾𝛾𝛾𝛾; thereby, the concept of a 
computable isomorphism is applicable to such 
objects. A finite signature is called rich, if it contains 
at least one 𝑛𝑛𝑛𝑛-ary predicate or function symbol for 
𝑛𝑛𝑛𝑛 𝑛 2, or two unary function symbols. By ℂ, we 
denote the class of all complete theories of 
enumerable signatures. The record 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 means 
isomorphism of theories 𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑇𝑇, while 𝑇𝑇𝑇𝑇 𝑇𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇
stands for algebraic isomorphism of the theories, cf. 
[3].

We follow the algebraic type of definability using 
∃⋂∀-formulas affecting more delicate properties of 
theories in comparison with the normal approach 
based on the definability via arbitrary first-order 
formulas. As an ∃⋂∀-formula 𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥) of signature 𝜎𝜎𝜎𝜎,
we mean a pair of formulas �𝜑𝜑𝜑𝜑𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥𝑥),𝜑𝜑𝜑𝜑𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑥)� together 
with the domain sentence 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥)� =
(∀𝑥𝑥𝑥𝑥𝑥)[𝜑𝜑𝜑𝜑𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥𝑥) ↔ 𝜑𝜑𝜑𝜑𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑥)], where 𝜑𝜑𝜑𝜑𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥𝑥) is an ∃-
formula, while 𝜑𝜑𝜑𝜑𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑥) is a ∀-formula of signature 𝜎𝜎𝜎𝜎.
A formula 𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥) of theory 𝑇𝑇𝑇𝑇 is said to be ∃⋂∀-
presentable in 𝑇𝑇𝑇𝑇 if 𝑇𝑇𝑇𝑇 𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥𝑥)�. If 𝜓𝜓𝜓𝜓(𝑥𝑥𝑥𝑥𝑥) is a 
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quantifier-free formula, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜓𝜓𝜓𝜓(�̅�𝑥𝑥𝑥)� is supposed 
to be a generally true formula. If 𝜘𝜘𝜘𝜘 is a finite set 
(or a sequence) of ∃⋂∀-formulas 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖(�̅�𝑥𝑥𝑥𝑖𝑖𝑖𝑖), 𝑖𝑖𝑖𝑖 < 𝑘𝑘𝑘𝑘,
we denote by 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜘𝜘𝜘𝜘) the conjunction 
⋀𝑖𝑖𝑖𝑖<𝑘𝑘𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷�𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖(�̅�𝑥𝑥𝑥𝑖𝑖𝑖𝑖)�.

We formulate a technical statement.
Lemma 0.1. [8, Lemma 2.4.2] Let 𝔐𝔐𝔐𝔐 be a finite 

model of an enumerable signature 𝜎𝜎𝜎𝜎. Then, any for-
mula 𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥1, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) of signature 𝜎𝜎𝜎𝜎 is equivalent in the-
ory 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐) to an ∃⋂∀-formula of signature 𝜎𝜎𝜎𝜎.

Proof. By condition, theory 𝑇𝑇𝑇𝑇 has a unique up to 
an isomorphism model 𝔐𝔐𝔐𝔐; moreover, 𝔐𝔐𝔐𝔐 is finite. 
Therefore, any isomorphic embedding of models of 
theory 𝑇𝑇𝑇𝑇 is elementary. By Robinson's Criterion, [9], 
we obtain that theory 𝑇𝑇𝑇𝑇 is model complete. Hence, we 
have the ∃-reducibility as well as ∀-reducibility of 
any formula in theory 𝑇𝑇𝑇𝑇. □

Cartesian-type interpretations

We use a standard concept of an interpretation of 
a theory 𝑇𝑇𝑇𝑇0 in the region 𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥) of a theory 𝑇𝑇𝑇𝑇1, [10,
Section 4.7]. An interpretation is called effective if it 
is defined by a computable function. Classes of 
isostone and model-bijective interpretations are 
introduced in [11]. In this section, we introduce a 
technical class of interpretations presenting finitary 
methods in first-order logic.

Given a signature 𝜎𝜎𝜎𝜎 and a finite sequence of 
formulas of this signature of either of the following 
forms:

(a) ϰ = 〈𝜑𝜑𝜑𝜑1
𝑚𝑚𝑚𝑚1 ⁄ 𝜀𝜀𝜀𝜀1,𝜑𝜑𝜑𝜑2

𝑚𝑚𝑚𝑚2 ⁄ 𝜀𝜀𝜀𝜀2, … ,𝜑𝜑𝜑𝜑𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 ⁄ 𝜀𝜀𝜀𝜀𝑠𝑠𝑠𝑠 〉, (1.1)

(b) ϰ = �𝜑𝜑𝜑𝜑1
𝑚𝑚𝑚𝑚1 ,𝜑𝜑𝜑𝜑2

𝑚𝑚𝑚𝑚2 , … ,𝜑𝜑𝜑𝜑𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠�,

where 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘(�̅�𝑥𝑥𝑥𝑘𝑘𝑘𝑘) is a formula with 𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘 free variables, 
𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘 , 𝑧𝑧𝑧𝑧�̅�𝑘𝑘𝑘) is a formula with 2𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘 free variables such 
that 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘) = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧�̅�𝑘𝑘𝑘) = 𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘; moreover, (1.1)(b) 
is a simplified notation instead of the common entry 
(1.1)(a) in the case when 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘 , 𝑧𝑧𝑧𝑧�̅�𝑘𝑘𝑘) coincides with 
𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘 = 𝑧𝑧𝑧𝑧�̅�𝑘𝑘𝑘 for all 𝑘𝑘𝑘𝑘 ⩽ 𝑠𝑠𝑠𝑠.

Starting from a model 𝔐𝔐𝔐𝔐 of signature 𝜎𝜎𝜎𝜎 together 
with a tuple 𝜘𝜘𝜘𝜘 of any of the forms (1.1)(a,b), we are 
going to construct a new model 𝔐𝔐𝔐𝔐1 of signature

𝜎𝜎𝜎𝜎1 = 𝜎𝜎𝜎𝜎 ∪ {𝑈𝑈𝑈𝑈1,𝑈𝑈𝑈𝑈11,𝑈𝑈𝑈𝑈21, … ,𝑈𝑈𝑈𝑈𝑠𝑠𝑠𝑠1} ∪

�𝐾𝐾𝐾𝐾1
𝑚𝑚𝑚𝑚1+1,𝐾𝐾𝐾𝐾2

𝑚𝑚𝑚𝑚2+1, … ,𝐾𝐾𝐾𝐾𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠+1�      (1.2)

as follows. As the universe, we take |𝔐𝔐𝔐𝔐1| = |𝔐𝔐𝔐𝔐| ∪
𝐷𝐷𝐷𝐷1 ∪ 𝐷𝐷𝐷𝐷2 ∪ …∪ 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠, where all specified parts are 

pairwise disjoint sets. On the set |𝔐𝔐𝔐𝔐|, all symbols of 
signature 𝜎𝜎𝜎𝜎 are defined exactly as they were defined 
in 𝔐𝔐𝔐𝔐; in the remainder, they are defined trivially; 
predicate 𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥) distinguishes |𝔐𝔐𝔐𝔐|; predicate 𝑈𝑈𝑈𝑈𝑘𝑘𝑘𝑘(𝑥𝑥𝑥𝑥)
distinguishes 𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘; the other predicates are defined by 
specific rules depending on the case. In the case 
(1.1)(b), each predicate 𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘(�̅�𝑥𝑥𝑥𝑘𝑘𝑘𝑘 ,𝑢𝑢𝑢𝑢) in (1.2) should be 
defined so that it would represent a one-to-one 
correspondence between the set of tuples {𝑎𝑎𝑎𝑎 � | 𝔐𝔐𝔐𝔐 ⊨
𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘(𝑎𝑎𝑎𝑎�)} and the set 𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘 = 𝑈𝑈𝑈𝑈𝑘𝑘𝑘𝑘(𝔐𝔐𝔐𝔐1). Turn to the most 
common case (1.1)(a). Denote by 𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸(𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘 ,𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘) a
sentence stating that 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘 is an equivalence relation on 
the set of tuples distinguished by the formula 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘(�̅�𝑥𝑥𝑥𝑘𝑘𝑘𝑘)
in 𝔐𝔐𝔐𝔐. In this case, (𝐷𝐷𝐷𝐷𝑘𝑘𝑘𝑘 + 1)-ary predicate 𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘(�̅�𝑥𝑥𝑥𝑘𝑘𝑘𝑘 ,𝑢𝑢𝑢𝑢)
should be defined so that it would represent a one-to-
one correspondence between the quotient set 
{𝑎𝑎𝑎𝑎 � | 𝔐𝔐𝔐𝔐 ⊨ 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘(𝑎𝑎𝑎𝑎�)} ⁄ 𝜀𝜀𝜀𝜀′𝑘𝑘𝑘𝑘 and the set 𝑈𝑈𝑈𝑈𝑘𝑘𝑘𝑘(𝔐𝔐𝔐𝔐1), where

𝜀𝜀𝜀𝜀′𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘 , 𝑧𝑧𝑧𝑧�̅�𝑘𝑘𝑘) = 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘 , 𝑧𝑧𝑧𝑧�̅�𝑘𝑘𝑘) ∨ ┐𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸(𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘 ,𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘). (1.3)

The model 𝔐𝔐𝔐𝔐1 obtained from 𝔐𝔐𝔐𝔐 and 𝜘𝜘𝜘𝜘 as
explained above is denoted by 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉.

The aim of replacement of 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘 by 𝜀𝜀𝜀𝜀′𝑘𝑘𝑘𝑘 using 
𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸(𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘 ,𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘) is to provide the total definiteness of 
the operation (𝔐𝔐𝔐𝔐,𝜘𝜘𝜘𝜘) ↦ 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 independently of 
whether the formulas 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘, 𝑘𝑘𝑘𝑘 = 1,2, … , 𝑠𝑠𝑠𝑠, represent 
equivalence relations in corresponding domains or 
not. In the case (1.1)(a), 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 is said to be a 
Cartesian-quotient extension of 𝔐𝔐𝔐𝔐, while in the case 
(1.1)(b), the model 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 is said to be a Cartesian 
extension of 𝔐𝔐𝔐𝔐 by a sequence of formulas 𝜘𝜘𝜘𝜘.

Mention some kind of determinism for the 
operation under consideration.

Lemma 1.1. Given a signature 𝜎𝜎𝜎𝜎 and a tuple 𝜘𝜘𝜘𝜘 of 
the form (1.1)(a). For a fixed choice of signature 
(1.2), Cartesian-quotient extension 𝔐𝔐𝔐𝔐1 = 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 of 
the model 𝔐𝔐𝔐𝔐 is defined uniquely, up to an 
isomorphism over 𝔐𝔐𝔐𝔐. Moreover, we have |𝔐𝔐𝔐𝔐1| =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑈𝑈𝑈𝑈(𝔐𝔐𝔐𝔐1)�. Thus, any automorphism 𝜆𝜆𝜆𝜆:𝔐𝔐𝔐𝔐 →𝔐𝔐𝔐𝔐
can be extended, by a unique way, up to an 
automorphism 𝜆𝜆𝜆𝜆∗:𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 → 𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉.

Proof. This statement is an immediate 
consequence of the construction. □

Expand the operation of an extension (initially 
defined for models) on theories. Given a theory 𝑇𝑇𝑇𝑇 and 
a tuple 𝜘𝜘𝜘𝜘 of the form (1.1). Using a fixed signature 
(1.2) for extensions of models, we define a new 
theory 𝑇𝑇𝑇𝑇′ = 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉 as follows: 𝑇𝑇𝑇𝑇′ = 𝑇𝑇𝑇𝑇ℎ(𝐾𝐾𝐾𝐾), 𝐾𝐾𝐾𝐾 =
{𝔐𝔐𝔐𝔐〈𝜘𝜘𝜘𝜘〉 | 𝔐𝔐𝔐𝔐 ∈ 𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀(𝑇𝑇𝑇𝑇)}. In the case (1.1)(a) it is 
called a Cartesian-quotient extension of 𝑇𝑇𝑇𝑇, while in 
the case (1.1)(b) it is called a Cartesian extension of 
𝑇𝑇𝑇𝑇 by a sequence 𝜘𝜘𝜘𝜘.
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We study simple properties of Cartesian-type 
extensions.

Lemma 1.2. For any model 𝔐𝔐𝔐𝔐 of theory 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉,
there is a model 𝔑𝔑𝔑𝔑 of theory 𝑇𝑇𝑇𝑇 such that 
𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝔐𝔐𝔐𝔐 ≅ 𝔑𝔑𝔑𝔑〈𝜘𝜘𝜘𝜘〉 takes place.

Proof. Immediately, from definition of the 
operation 𝑇𝑇𝑇𝑇 ↦ 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉. □

In theory 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉, the region 𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥) represents a 
model of theory 𝑇𝑇𝑇𝑇. Particularly, the transformation 
𝑇𝑇𝑇𝑇 ↦ 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉 defines a natural interpretation 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇,𝜘𝜘𝜘𝜘 of 𝑇𝑇𝑇𝑇 in 
𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉. It is called a plain Cartesian-quotient 
interpretation. Similar definition applies to the other 
case of the tuple 𝜘𝜘𝜘𝜘; thereby, the concept of a plain 
Cartesian interpretation is also defined. Considering 
theories up to an algebraic isomorphism, we may use 
shorter terms Cartesian-quotient or, respectively, 
Cartesian interpretation, for details, cf. [12].

Lemma 1.3. Given a theory 𝑇𝑇𝑇𝑇 of an enumerable 
signature 𝜎𝜎𝜎𝜎 and a sequence of formulas 𝜘𝜘𝜘𝜘. The plain 
Cartesian-quotient interpretation 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇,𝜘𝜘𝜘𝜘:𝑇𝑇𝑇𝑇 ↣ 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉 is 
effective, model-bijective, and isostone. In particular, 
the interpretation 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇,𝜘𝜘𝜘𝜘 determines a computable 
isomorphism 𝜇𝜇𝜇𝜇𝑇𝑇𝑇𝑇,𝜘𝜘𝜘𝜘: ℒ(𝑇𝑇𝑇𝑇) ⟶ ℒ(𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉) between the 
Tarski-Lindenbaum algebras.

Proof. Immediately. □
Normally, we consider passages 𝑇𝑇𝑇𝑇 ↦ 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉with a

sequence (1.1) satisfying the following technical 
condition:

𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘(�̅�𝑥𝑥𝑥𝑘𝑘𝑘𝑘) 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦�𝑘𝑘𝑘𝑘 , 𝑧𝑧𝑧𝑧�̅�𝑘𝑘𝑘) 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
∃⋂∀-𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖, 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑘𝑘𝑘𝑘 ⩽ 𝑠𝑠𝑠𝑠. (1.4)

Denote by 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷(𝜎𝜎𝜎𝜎) and 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝜎𝜎𝜎𝜎) the sets of tuples 
of formulas of signature 𝜎𝜎𝜎𝜎 of the forms, respectively, 
(1.1)(a) and (1.1)(b), while 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷 and 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 are unions of 
these sets for all possible enumerable signatures 𝜎𝜎𝜎𝜎.
We denote by 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ the set of all tuples (1.1)(b) 
satisfying (1.4), while 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷∃⋂∀𝜀𝜀𝜀𝜀 is the set of all tuples 
(1.1)(a) satisfying (1.4). When using an entry 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉,
we always suppose that theory 𝑇𝑇𝑇𝑇 is applicable to the 
tuple 𝜘𝜘𝜘𝜘; moreover, it is supposed that 𝑇𝑇𝑇𝑇 ⊢
𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜘𝜘𝜘𝜘) whenever 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ or 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷∃⋂∀𝜀𝜀𝜀𝜀 .

By applying an extra term algebraic, we 
explicitly indicate that the algebraic approach is 
accepted. For instance, a passage 𝑇𝑇𝑇𝑇 ↦ 𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉 is said to 
be an algebraic Cartesian-quotient extension
whenever 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷∃⋂∀𝜀𝜀𝜀𝜀 , an interpretation 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇,𝜘𝜘𝜘𝜘 is said to 
be a plain algebraic Cartesian interpretation if 
𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀, etc.

We consider combinatorial properties of 
Cartesian-type extensions.

Lemma 1.4. Given a theory 𝑇𝑇𝑇𝑇 of an enumerable 
signature 𝜎𝜎𝜎𝜎 together with a sequence of formulas 𝜘𝜘𝜘𝜘.
The following statements are satisfied, where all 
indicated passages are supposed to be effective with 
respect to Gödel's numbers of tuples of formulas;
moreover, the choice of tuples is limited by the 
condition of applicability to corresponding theories:

(a) Suppose that 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷. For any 𝜘𝜘𝜘𝜘′ in 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷, there 
is a tuple 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷 such that an isomorphism

𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘^𝜘𝜘𝜘𝜘′〉 ≈ (𝑇𝑇𝑇𝑇⟨𝜘𝜘𝜘𝜘⟩)〈𝜘𝜘𝜘𝜘′′〉               (1.5)

takes place; and vice versa, for any 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷, there 
is a tuple 𝜘𝜘𝜘𝜘′ in 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷 such that an isomorphism (1.5)
takes place.

(b) Suppose that 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. For any 𝜘𝜘𝜘𝜘′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, there 
is a tuple 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 such that an isomorphism (1.5)
takes place; and vice versa, for any 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, there 
is a tuple 𝜘𝜘𝜘𝜘′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 such that an isomorphism (1.5)
takes place.

(c) Suppose that 𝜘𝜘𝜘𝜘 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀. For any 𝜘𝜘𝜘𝜘′ in 
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀, there is a tuple 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ such that an 
isomorphism

𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘^𝜘𝜘𝜘𝜘′〉 ≈𝑎𝑎𝑎𝑎 (𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘〉)〈𝜘𝜘𝜘𝜘′′〉              (1.6)

takes place; and vice versa, for any 𝜘𝜘𝜘𝜘′′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀,
there is a tuple 𝜘𝜘𝜘𝜘′ in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ such that an isomorphism 
(1.6) takes place.

Proof. Validity of these statements can be 
checked by applying a routine construction based on 
expressive possibilities of first-order logic. □

Introduce notations for two following relations 
on the class of arbitrary theories including both 
complete and incomplete ones:

(a)  𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 ⇔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛
(∃𝜘𝜘𝜘𝜘′𝜘𝜘𝜘𝜘′′ ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀)[𝑇𝑇𝑇𝑇〈𝜘𝜘𝜘𝜘′〉 ≈𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆〈𝜘𝜘𝜘𝜘′′〉],       (1.7)

(b)   𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎
○ 𝑆𝑆𝑆𝑆 ⇔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛

�∃ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇:ℒ(𝑇𝑇𝑇𝑇) ⟶ ℒ(𝑆𝑆𝑆𝑆)�

(∀ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 𝑇𝑇𝑇𝑇′ ⊇ 𝑇𝑇𝑇𝑇)
(∀ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 𝑆𝑆𝑆𝑆′ ⊇ 𝑆𝑆𝑆𝑆)

[𝑆𝑆𝑆𝑆′ = 𝜇𝜇𝜇𝜇(𝑇𝑇𝑇𝑇′) ⇒ (∃𝜘𝜘𝜘𝜘′𝜘𝜘𝜘𝜘′′ ∈
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀)(𝑇𝑇𝑇𝑇′〈𝜘𝜘𝜘𝜘′〉 ≈𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆′〈𝜘𝜘𝜘𝜘′′〉)].

Lemma 1.5. The relation (1.7)(a) on the class of 
theories of enumerable signatures is reflexive, 
symmetric, and transitive (that is, this is an 
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equivalence relation). Besides, (1.7)(b) is also an 
equivalence relation on the class of all theories. 
Moreover, we have 𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 ⇒ 𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎

○ 𝑆𝑆𝑆𝑆 for all 
theories 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆, and 𝑇𝑇𝑇𝑇1 ≊𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇2 ⇔ 𝑇𝑇𝑇𝑇1 ≊𝑎𝑎𝑎𝑎

○ 𝑇𝑇𝑇𝑇2 for all 
complete theories 𝑇𝑇𝑇𝑇1 and 𝑇𝑇𝑇𝑇2.

Proof. Obviously, ≊𝑎𝑎𝑎𝑎 is reflexive and symmetric. 
Now, suppose that 𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻 and 𝐻𝐻𝐻𝐻 ≊𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 is satisfied. 
By definition, there are tuples 𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀, 𝑖𝑖𝑖𝑖 =
1,2,3,4, such that 𝑇𝑇𝑇𝑇〈𝜉𝜉𝜉𝜉1〉 ≈𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻〈𝜉𝜉𝜉𝜉2〉 and 
𝐻𝐻𝐻𝐻〈𝜉𝜉𝜉𝜉3〉 ≈𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆〈𝜉𝜉𝜉𝜉4〉. By applying Lemma 1.4(c), we can 
find tuples 𝜉𝜉𝜉𝜉′2 and 𝜉𝜉𝜉𝜉′3 in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ such that the 
following algebraic isomorphisms take place: 
𝑇𝑇𝑇𝑇〈𝜉𝜉𝜉𝜉1^𝜉𝜉𝜉𝜉′3〉 ≈𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻〈𝜉𝜉𝜉𝜉2^𝜉𝜉𝜉𝜉3〉 ≈𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻〈𝜉𝜉𝜉𝜉3^𝜉𝜉𝜉𝜉2〉 ≈𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆〈𝜉𝜉𝜉𝜉4^𝜉𝜉𝜉𝜉′2〉
. Thus, we obtain 𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 ensuring the transitivity 
property. The fact that relation (1.7)(b) is reflexive, 
symmetric, and transitive on the class of all theories 
is checked immediately. As for the pointed out links 
between the relations ≊𝑎𝑎𝑎𝑎 and ≊𝑎𝑎𝑎𝑎

○ , they are derived 
based on definitions (1.7)(a) and (1.7)(b) together 
with properties of the computable isomorphisms 𝜇𝜇𝜇𝜇 in
Lemma 1.3. □                                 

There are model-type versions ≊ and ≊○ of the 
relations without index 𝑎𝑎𝑎𝑎, thus, discarding the 
algebraic mode of definability. For this, we have to 
use common class 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 instead of specialized one 
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ in the rules (1.7)(a) and (1.7)(b).

Formal specification for a model-theoretic 
property

We use a general specification to the concept of 
a real model-theoretic property, [2]. By accepting the 
pragmatic approach, cf. Definition 4 and Definition 
6 in [2], we have for all complete theories 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆:

𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑆𝑆𝑆𝑆 ℎ𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎-𝑀𝑀𝑀𝑀ℎ𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ⟺ 𝑇𝑇𝑇𝑇 ≊𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆. (2.1)

                
As for the common rule (1.7)(b), it represents the 

relation of coincidence of real model-theoretic 
properties for arbitrary first-order theories (including 
incomplete ones).

Virtual isomorphisms for finite models

We prove the following fact of a technical 
character.

Lemma 3.1. [8, Theorem 2.4.4] Let 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑 be 
finite models of enumerable signatures such that an
isomorphism 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀(𝔐𝔐𝔐𝔐) ≅ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀(𝔑𝔑𝔑𝔑) 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸.
Then, we have 𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐) ≊ 𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑), i.e., the following 
relation is satisfied: (∃𝜘𝜘𝜘𝜘𝜘𝜘𝜘𝜘′ ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)[𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐)〈𝜘𝜘𝜘𝜘〉 ≈
𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑)〈𝜘𝜘𝜘𝜘′〉].

Proof. Consider two finite models 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑
whose automorphism groups are isomorphic. Let 𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐) and 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑). We assume that the universe 
sets of the models |𝔐𝔐𝔐𝔐| = {𝑎𝑎𝑎𝑎1, … ,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚}, |𝔑𝔑𝔑𝔑| =
{𝑝𝑝𝑝𝑝1, … , 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛} as well as their signatures 𝜏𝜏𝜏𝜏 and 𝜎𝜎𝜎𝜎 are 
disjoint. Fix an isomorphism 𝐸𝐸𝐸𝐸:𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀(𝔐𝔐𝔐𝔐) → 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀(𝔑𝔑𝔑𝔑)
and construct a new model 𝔓𝔓𝔓𝔓 of signature 𝜏𝜏𝜏𝜏 ∪ 𝜎𝜎𝜎𝜎 ∪
{𝑈𝑈𝑈𝑈1,𝑉𝑉𝑉𝑉1,𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛} as follows. We put

|𝔓𝔓𝔓𝔓| = |𝔐𝔐𝔐𝔐| ∪ |𝔑𝔑𝔑𝔑|,

𝑈𝑈𝑈𝑈(𝑥𝑥𝑥𝑥) ⇔ 𝑥𝑥𝑥𝑥 ∈ |𝔐𝔐𝔐𝔐|,   𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥) ⇔ 𝑥𝑥𝑥𝑥 ∈ |𝔑𝔑𝔑𝔑|,

𝜏𝜏𝜏𝜏-𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 |𝔐𝔐𝔐𝔐| 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀ℎ𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 𝔐𝔐𝔐𝔐,
𝑀𝑀𝑀𝑀ℎ𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖,

𝜎𝜎𝜎𝜎-𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛 |𝔑𝔑𝔑𝔑| 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀ℎ𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 𝔑𝔑𝔑𝔑,
𝑀𝑀𝑀𝑀ℎ𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖,

𝑅𝑅𝑅𝑅 = {〈𝜇𝜇𝜇𝜇(𝑎𝑎𝑎𝑎1), … , 𝜇𝜇𝜇𝜇(𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚), 𝐸𝐸𝐸𝐸𝜇𝜇𝜇𝜇(𝑝𝑝𝑝𝑝1), … , 𝐸𝐸𝐸𝐸𝜇𝜇𝜇𝜇(𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛)〉 | 𝜇𝜇𝜇𝜇 ∈
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀(𝔐𝔐𝔐𝔐)}.

Due to connections via predicate 𝑅𝑅𝑅𝑅, any 
automorphism of the model 𝔓𝔓𝔓𝔓 acts in coordination on 
both models 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑. In particular, we have 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀(𝔐𝔐𝔐𝔐) ≅ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀(𝔓𝔓𝔓𝔓) ≅ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀(𝔑𝔑𝔑𝔑). Moreover, any 
automorphism 𝜆𝜆𝜆𝜆 of 𝔓𝔓𝔓𝔓 is an identical mapping on the 
whole model 𝔓𝔓𝔓𝔓 whenever it is identical on |𝔐𝔐𝔐𝔐|. By 
Beth's Definability Theorem, [5], all elements in 𝔓𝔓𝔓𝔓
are first-order definable over its domain 𝑈𝑈𝑈𝑈(𝔓𝔓𝔓𝔓).
Therefore, the natural interpretation of 𝑇𝑇𝑇𝑇 in 𝑇𝑇𝑇𝑇ℎ(𝔓𝔓𝔓𝔓) is 
exact. By Lemma 3.2 in [12], the theory 𝑇𝑇𝑇𝑇ℎ(𝔓𝔓𝔓𝔓) is 
isomorphic to the theory 𝑇𝑇𝑇𝑇⟨𝜘𝜘𝜘𝜘′⟩ for a sequence 𝜘𝜘𝜘𝜘′ ∈
𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷. Moreover, Lemma 3.3 in [12] is applicable. 
Thus, we have 𝜘𝜘𝜘𝜘′ ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. A similar reasoning shows 
that theory 𝑇𝑇𝑇𝑇ℎ(𝔓𝔓𝔓𝔓) is isomorphic to theory 𝑆𝑆𝑆𝑆⟨𝜘𝜘𝜘𝜘′′⟩ for 
a sequence 𝜘𝜘𝜘𝜘′′ ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. □

Model-theoretic properties versus 
finite/infinite models

In this paragraph, we establish how finite models 
are related with the concept of a real model-theoretic 
property introduced in [2].

From the rule (2.1) we obtain that the set of all 
real model-theoretic properties has the form of a 
complete Boolean algebra of subsets 𝒫𝒫𝒫𝒫(ℂ ⁄≊𝑎𝑎𝑎𝑎).
Moreover, separate classes [𝑇𝑇𝑇𝑇]≊𝑎𝑎𝑎𝑎, 𝑇𝑇𝑇𝑇 ∈ ℂ, are atoms
of this Boolean algebra. They are said to be atomic 
model-theoretic properties.

The following presentation takes place.
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Lemma 4.1. An arbitrary class 𝔭𝔭𝔭𝔭 of complete 
theories is a real model-theoretic property if and only 
if 𝔭𝔭𝔭𝔭 is the union of a family of atomic model-theoretic 
properties.

Proof. Immediately. □
Lemma 4.2. Let 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑 be abritrary models of 

enumerable signatures such that (∃𝜘𝜘𝜘𝜘𝜘𝜘𝜘𝜘′ ∈
𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷)[𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐)〈𝜘𝜘𝜘𝜘〉 ≈ 𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑)〈𝜘𝜘𝜘𝜘′〉]. The following 
assertions are satisfied :

(a) 𝔐𝔐𝔐𝔐 is finite if and only if  𝔑𝔑𝔑𝔑 is finite,
(b) 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐) ≅ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔑𝔑𝔑𝔑).
Proof. These statements are provided by 

construction of a Cartesian-quotient extension of a 
model, cf. Lemma 1.1 together with Lemma 1.2. □

Let us present the set ℂ of all complete theories 
of enumerable signatures in the form ℂ = ℂ ∞ ∪ ℂ 0,
where

ℂ∞ = {𝑇𝑇𝑇𝑇 ∈ ℂ | 𝑇𝑇𝑇𝑇 ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷},

ℂ0 = {𝑇𝑇𝑇𝑇 ∈ ℂ | 𝑇𝑇𝑇𝑇 ℎ𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷}.

By definition, we have 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ ⊆ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ⊆ 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷.
Therefore, by Lemma 4.2, each of the sets ℂ∞ and ℂ0
is closed under the equivalence relation ≊𝑎𝑎𝑎𝑎. Thus, 
any real model-theoretic property 𝔭𝔭𝔭𝔭 ⊆ ℂ ⁄≊𝑎𝑎𝑎𝑎 can be 
decomposed into two parts as follows:

𝔭𝔭𝔭𝔭 = 𝔭𝔭𝔭𝔭′ ∪ 𝔭𝔭𝔭𝔭′′, 𝑤𝑤𝑤𝑤ℎ𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝 𝔭𝔭𝔭𝔭′′ ⊆ ℂ∞ ≊𝑎𝑎𝑎𝑎
�

𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷  𝔭𝔭𝔭𝔭′ ⊆ ℂ0 ⁄≊𝑎𝑎𝑎𝑎.          (4.1)

Moreover, decomposition (4.1) is defined 
uniquely for any given property 𝔭𝔭𝔭𝔭.

A model-theoretic property 𝔭𝔭𝔭𝔭 is said to be purely 
infinite if the part 𝔭𝔭𝔭𝔭′ in decomposition (4.1) is empty. 
The property 𝔭𝔭𝔭𝔭 is said to be purely finite if the part 𝔭𝔭𝔭𝔭′′
in (4.1) is empty. Obviously, there are properties 𝔭𝔭𝔭𝔭
for which both parts 𝔭𝔭𝔭𝔭′ and 𝔭𝔭𝔭𝔭′′ in (4.1) are nonempty. 
Purely infinite model-theoretic properties are 
normally considered in traditional model theory. As 
for the purely finite model-theoretic properties, no 
regular view on this concept had been available 
before the definition of a model-theoretic property in 
the work [2] was appeared.

Lemma 4.3. Let 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑 be finite models of 
enumerable signatures such that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐) ≅
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔑𝔑𝔑𝔑). Then, we have (∃𝜘𝜘𝜘𝜘𝜘𝜘𝜘𝜘′ ∈
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀)[𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐)〈𝜘𝜘𝜘𝜘〉 ≈𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑)〈𝜘𝜘𝜘𝜘′〉].

Proof. By applying Lemma 3.1 together with 
Lemma 0.1. □

Theorem 4.4. Let 𝔐𝔐𝔐𝔐 and 𝔑𝔑𝔑𝔑 be finite models. The 
theories 𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐) and 𝑇𝑇𝑇𝑇ℎ(𝔑𝔑𝔑𝔑) have identical real 

model-theoretic properties if and only if their 
automorphism groups 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐) and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔑𝔑𝔑𝔑) are 
isomorphic.

Proof. Part ⇒ is provided by relations (2.1) and 
(1.7)(a) together with an inclusion 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾∃⋂∀ ⊆ 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷 and 
Lemma 4.2. The back implication ⇐ is proved from 
Lemma 4.3 together with relations (1.7)(a) and (2.1).

The following statement characterizes atomic 
purely finite model-theoretic properties.

Theorem 4.5. An arbitrary class 𝔭𝔭𝔭𝔭 of complete 
theories is an atomic purely finite model-theoretic 
property if and only if the following is satisfied for a 
finite group 𝐺𝐺𝐺𝐺:

𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺 =𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 {𝑇𝑇𝑇𝑇ℎ(𝔐𝔐𝔐𝔐) | 𝔐𝔐𝔐𝔐 ∈
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  & 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝔐𝔐𝔐𝔐) ≅ 𝐺𝐺𝐺𝐺},

where 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the class of all finite models of 
enumerable signatures.

Proof. By applying Theorem 4.4. □

Conclusion

We used a general specification of the concept of 
a model-theoretic property introduced in [2]. Based 
on separate analysis of cases for finite and infinite 
models, we characterize the structure of real model-
theoretic properties.

Statements of Theorem 4.4 and Theorem 4.5 fully 
characterize the case of model-theoretic properties 
for complete theories with finite models. It is a simple 
fact that elements in a finite model with the trivial 
automorphism group are uniquely defined. Thus, 
such models as well as their theories can be 
considered as a basis for constructing abstract 
databases in applied logic. By Theorem 4.5, all 
models of this class form the only model-theoretic 
property; i.e., they are not distinguishable from the 
point of view of model theory. Thereby, it is possible 
to conclude that the class of all finite models with 
unique elements as well as the corresponding class of 
complete theories is not of interest as a database with 
an interface based on the first-order logic language.
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