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AN EXISTENCE SOLUTION  

TO AN IDENTIFICATION PARAMETER PROBLEM  
FOR HIGHER-ORDER PARTIAL DIFFERENTIAL EQUATIONS  

  
 

Abstract. The initial-boundary value problem with parameter for higher-order partial differential 
equations is considered. We study the existence of its solution and also propose a method for finding 
approximate solutions. We are established a sufficient conditions for the existence and uniqueness of the 
solution to the identification parameter problem under consideration. Introducing new unknown 
functions, we reduce the considered problem to an equivalent problem consisting of a nonlocal problem 
for second-order hyperbolic equations with functional parameters and integral relations. An algorithm for 
finding an approximate solution to the problem under study is proposed and its convergence is proved. 
Sufficient conditions for the existence of a unique solution to an equivalent problem with parameters are 
established. The conditions for the unique solvability of the initial-boundary value problem with 
parameter for higher-order partial differential equations are obtained in terms of the initial data. Unique 
solvability to the initial-boundary value problem with parameter for higher-order partial differential 
equations is interconnected with unique solvability to the nonlocal problem with parameter for second-
order hyperbolic equations. 
Key words: higher-order partial differential equations, identification parameter problem, nonlocal 
problem with parameters, hyperbolic equations of second order, solvability. 

 
 
Introduction 
 
An initial-boundary value problems with and 

without parameters for higher-order partial 
differential equations belong to one of the most 
important classes of problems in mathematical 
physics [1-14]. For studying of various problems 
with and without parameters for higher-order partial 
differential equations, along with classical methods 
of mathematical physics, such as the Fourier 
method, the Green's function method, the Poincare 
metric concept, the method of differential 
inequalities, and other methods of the qualitative 
theory of ordinary differential equations are also 
often applied. Based on these methods, the 
solvability conditions of the considered problems 
with and without parameters were established and 
ways to solve them were offered in [15-33]. 
However, the search for effective criteria of the 
unique solvability of initial-boundary value 
problems with parameters still remains relevant.  

It is known that an ordinary differential equation 
of higher order can be reduced to a system of 
ordinary differential equations of the first order by 

special substitution. Using the methods of the 
qualitative theory of ordinary differential equations, 
the solvability conditions for the obtaining system 
can be formulated in the terms of the fundamental 
matrix of the differential part or the right side of the 
system. An analogous approach can be applied to 
higher-order hyperbolic equations with two 
independent variables and their can be reduced to a 
system of second order hyperbolic equations with 
mixed derivatives by replacement. Further, using 
well-known methods for solving problems for 
systems of hyperbolic equations with mixed 
derivatives, the solvability conditions can be 
established in different terms. 

 Mathematical modeling of many problems of 
physics, mechanics, chemistry, biology, and other 
sciences has resulted into the necessity of studying 
initial-boundary value problems with parameter for 
higher-order partial differential equations of 
hyperbolic type. Applying the methods of the 
qualitative theory of differential equations directly 
to these problems, we can establish the conditions 
for their solvability [1, 7, 8, 14, 23, 27-30]. 
Nonlocal problems with parameter for higher-order 
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partial differential equations of hyperbolic type by 
replacement are reduced to nonlocal problems with 
parameter for system of second-order hyperbolic 
equations. The theory of nonlocal problems with 
parameter for system of second-order hyperbolic 
equations has been developed in many papers. To 
date, various solvability conditions for nonlocal 
problems with parameter for hyperbolic equations 
have been obtained. 

The criteria for the unique solvability of some 
classes of linear nonlocal problems for hyperbolic 
equations with variable coefficients were obtained 
relatively recently [34-36]. In [34], a nonlocal 
problem with an integral condition for systems of 
hyperbolic equations by introducing new unknown 
functions is reduced to a problem consisting of a 
family of boundary value problems with an integral 
condition for systems of ordinary differential 
equations and functional relations. It is established 
that the well-posedness of a nonlocal problem with 
an integral condition for systems of hyperbolic 
equations is equivalent to the well-posedness of a 
family of two-point boundary value problems for a 
system of ordinary differential equations. In terms 
of the initial data, a criterion is established for the 
well-posedness of a nonlocal problem with an 
integral condition for systems of hyperbolic 
equations.  

 In present paper, we consider a higher-order 
partial differential equation defined in a rectangular 
domain. The boundary conditions for the time 
variable are specified as a combination of values 

from the partial derivatives of the desired solution in 
rows t = 0, t = T and t . We also study the 
existence and uniqueness of the solution to the 
initial-boundary value problem with parameter for a 
higher-order partial differential equation and its 
applications.  

 To solve the problem under consideration, we 
use the method of introducing additional functional 
parameters [34-36] and reduce the original problem 
to an equivalent problem consisting of a nonlocal 
problem with parameter for a second-order 
hyperbolic equation with functional parameters and 
integral relations. We establish sufficient conditions 
for the unique solvability of the considered problem 
in the terms of unique solvability of nonlocal 
problem with parameter for a second-order 
hyperbolic equation. Algorithms for finding a 
solution to an equivalent problem are constructed. 
The conditions for the unique solvability of the 
initial-boundary-value problem with parameter for 
the higher-order partial differential equations are 
established in the terms of the coefficients of the 
system and the boundary matrices.  

 
Statement of problem and scheme of method 

introduction functional parameters 
 
At the domain ],0[],0[  T , we consider 

the initial-boundary value problem with parameter 
for the higher-order partial differential equation of 
the following form: 

 

 ),()(),(),(),(),(
1

1

1

xtfxxtDuxtC
xt
uxtB

x
uxtA

xt
u m

i
i

i

ii

i

im

m




















 






 , ),( xt ,          (1) 

 

  )(),()(),()(
1

0 1
1 x

xt
xtuxS

x
xtuxP

j

m

i
tti

i

iji

i

ij j

















 

 , ],0[ x ,                            (2)  

 

 ),()0,( 0 ttu   ),(),(
10 t

x
xtu

x 



  …, ),(),(

101

1

t
x

xtu
mxm

m








   ],0[ Tt ,                (3) 

 

 ),()()(),()( 1 xxxM
x

xuxL m

m







 ],0[ x ,                                         (4) 

 
where ),( xtu  and )(x  are an unknown 

functions, the functions ),( xtAi , ),( xtBi , mi ,1 , 
),( xtC , and ),( xtf  are continuous on  , the 

functions )(xPij , )(xSij , mi ,1 , 1,0j , and 

)(x  are continuous on ],0[  , Ttt  100 , the 

functions )(ts , 1,0  ms , are continuously 
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differentiable on ],0[ T , the functions )(xL , 
)(xM , and )(1 x  are continuous on ],0[  , and 

T0 . Relation (4) is additional condition for 
determining unknown functional parameter )(x . 
The initial data satisfy the matching condition. 

 A pair of functions ))(),,(( xxtu  , with 
component ),(),( RCxtu  , 

)],,0([)( RCx    having partial derivatives 

),(),( RC
xt

xtu
pr

rp




 

, mp ,1 , 1,0r , is called 

a solution to problem with parameter (1) – (4) if it 
satisfies equation (1) for all ),( xt , the initial-
boundary conditions (2), (3) and additional 
condition (4).  

We will investigate the questions of the 
existence and uniqueness of solutions to the initial-
boundary value problem with parameter for a 
higher-order partial differential equation (1) – (4) 
and the construction of its approximate solutions. 
For these purposes, we apply the method of 
introducing additional functional parameters 
proposed in [34–36] for solving various nonlocal  
 

problems for systems of hyperbolic equations with 
mixed derivatives. The considered problem is 
reduced to a nonlocal problem with parameter for 
second-order hyperbolic equations, including 
additional functions, and integral relations. An 
algorithm for finding an approximate solution to the 
problem under study is proposed and its 
convergence is proved. Sufficient conditions for the 
existence of a unique solution to problem with 
parameter (1) – (4) are obtained in terms of the 
initial data. 

 
 Scheme of the method and reduction to 

equivalent problem.  
 
We introduce new unknown functions  
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and re-write problem with parameter (1)-(4) in the 
following form: 
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Here the conditions (3) are taken into account in (10).  
Differentiating (10) by t , we obtain  
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, 1,1  ms , is called a 

solution to problem with parameters (6)-(10), if it 
satisfies the second-order hyperbolic equation (6) 
for all ),( xt , boundary conditions (7) and (8), 
additional condition (9) and integral relations (10).  

 For fixed ),( xtvs , 1,1  ms , problem (6)--
(9) is a nonlocal problem with parameter for the 
hyperbolic equation with respect to ),( xtv  and 

)(x  on  . Integral relations (10) allow us to 

determine unknown functions ),( xtvs , 1,1  ms  
for all ),( xt . 

  
Algorithm 
 
 We determine the unknown function ),( xtv  

from the nonlocal problem with parameter for 
hyperbolic equations (6)-(9). Unknown functions 

),( xtvs , 1,1  ms , will be found from integral 
relations (10). 

 If we know the functions ),( xtvs , 1,1  ms , 
then from the nonlocal problem with parameter (6)--
(9) we find the functions ),( xtv  and )(x . And, 
conversely, if we know the functions ),( xtv  and 

)(x , then from the integral conditions (10) we 

find the functions ),( xtvs , 1,1  ms . Since both 

functions ),( xtv , )(x , ),( xtvs , 1,1  ms , are 
unknown, then to find a solution to problem (6)--
(10) we use an iterative method.  

The solution to problem with parameters (6)--
(10) is the system of functions ( ( , ), ( ),v t x x   

1 2 1( , ), ( , ),..., ( , ))mv t x v t x v t x  
 , which we defined as 
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( ) ( ) ( ) ( ) ( )
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And so on.  
Step k . 1) Suppose in the right-hand side of 
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The main results 
 
Consider auxiliary nonlocal problem with parameter  
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The following theorem provides conditions for 

the feasibility and convergence of the constructed 
algorithm, as well as conditions for the existence of 
a unique solution to problem with parameter (6)--
(10). The functions functions ),( xtAi , ),( xtBi , 

mi ,1 , ),( xtC , and ),( xtf  are continuous on 

 , the functions )(xPij , )(xSij , mi ,1 , 1,0j , 

and )(x  are continuous on ],0[  , the functions 

)(ts , 1,0  ms , are continuously differentiable 
on ],0[ T , the functions )(xL , )(xM , and )(1 x  
are continuous on ],0[  .  

 
 Theorem 1. Let  
i) the functions ),( xtAi , ),( xtBi , mi ,1 , 

),( xtC , and ),( xtf  be continuous on  ; 

ii) the functions )(xPij , )(xSij , mi ,1 , 

1,0j , and )(x  be continuous on ],0[  ; 

iii) the functions )(ts , 1,0  ms , be 
continuously differentiable on ],0[ T ;  

iv) th nonlocal problem with parameter has a 
unique solution.  

 
 
 

Then the nonlocal problem for the hyperbolic 
equation with parameters and integral conditions 
(6)--(10) has a unique solution ( ( , ), ( ),v t x x   

1 2 1( , ), ( , ),..., ( , ))mv t x v t x v t x  
  as a limit of 

sequences ( ) ( ) ( )
1( ( , ), ( ), ( , ),k k kv t x x v t x  

( ) ( )
2 1( , ),..., ( , ))k k

mv t x v t x  determined by the 
algorithm proposed above for ,...2,1,0k . 

The proof of Theorem 1 is similar to the proof 
of Theorem 1 in [35]. 

Then the unique solution ))(),,(( xxtu    to 
problem with parameter (1)-(4) determines as 

),(),( 1 xtvxtu    and )(x .  
The equivalence of problems (6)-(10) and (1)-

(4) implies  
 
 Theorem 2. Let conditions i) – iv) of Theorem 1 
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Then the initial-boundary value problem with 

parameter for the higher-order partial differential 
equation (1)--(4) has a unique classical solution 
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Theorem 3. Let  
a) conditions i) – iii) of Theorem 1 be fulfilled; 
b) the (2x2)- matrix ),,( TxQ  is invertible for 

all ],0[ x . 

Then the initial-boundary value problem with 
parameter for the higher-order partial differential 
equation (1)--(4) has a unique classical solution 

))(),,(( xxtu   . 
 



34 An existence solution to an identification parameter problem for higher-order partial differential equations

Int. j. math. phys. (Online)International Journal of Mathematics and Physics 11, №1, 28 (2020)

Conclusion 
 
Therefore, we are studied the identification 

parameter problem for higher-order partial 
differential equations with two variables. We are 
established the sufficient conditions for the 
existence and uniqueness of the solution to the 
considered identification parameter problem. We are 
reduced this problem to the equivalent problem 
consisting of the nonlocal problem for second-order 
hyperbolic equations with functional parameters and 
integral relations by introducing new unknown 
functions. An algorithm for finding an approximate 
solution to the equivalent problem with parameters 
is proposed and its convergence is proved. 
Sufficient conditions for the existence of the unique 
solution to the equivalent problem with parameters 
are established. The conditions for the unique 
solvability of the initial-boundary value problem 
with parameter for higher-order partial differential 
equations are obtained in terms of the initial data. 
Unique solvability to the identification parameter 
problem for higher-order partial differential 
equations is interconnected with unique solvability 
to the identification parameter problem for second-
order hyperbolic equations. These results will be 
developed to various initial-boundary value 
problems with parameters for the higher-order 
system of partial differential equations and control 
problems for second-order system of hyperbolic 
equations.  
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