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Abstract. Design of electrical monitoring of dams and barriersis an actual task in geophysics. A primary 
purpose is an exposure of change of structure, erosion, cracks and losses of weir on the early stages. Then 
it is important to remove and repair a weir and prevent destructions of dike overall. For mathematical 
modeling of electrical monitoring of dams and barriers, the authors consider the method of ERT. The 
paper shows a mathematical model of the electrical survey of dams and barriers based on the method of 
integral equations and the Fourier transform. Numerical calculations for this model are performed. The 
simulation results for studying the influence of the location of the water-dam boundary with respect to the 
sounding array are presented. For the purposes of mathematical modeling, two extreme cases were 
considered: a) a fluid is assumed to be infinitely conductive, b) a fluid is not conductive, i.e. distilled. The 
effect of a change in the position of the supply electrode at a fixed water level was also studied. The 
simulation results are presented in the form of apparent resistivity curves, as it is customary in geophysical 
practice. Distribution of density of secondary charges is also shown for the cases of infinitely conducting 
and distilledwater. 
Key words: method of integral equations, Fourier transform, apparent resistivity, electrical monitoring of 
dams and barriers, electrical tomography, resistivity method. 

 
 
Introduction 
 
Mathematical modeling is currently an 

indispensable tool for geophysical research. In 
particular, modeling of electrical monitoring of dams 
and barriers is one of the important tasks in 
geophysics. Modeling the influence of changes in the 
dam structure, the detection of leakage zones, the 
appearance of erosion, changes in water levels at the 
upper and lower pools, dam breaks and much more 
associated direct and inverse problems interest many 
scientists [1] – [10]. In order to prevent the damage of 
the dam and the destruction its structure, it is 
necessary to identify problems of leakage and erosion 
in the early stages by timely monitoring. In this case, 
it is desirable that the measurements were carried out 
on the same profiles and the same grounded 
electrodes along seasonal and annual monitoring. 
One of the powerful methods for monitoring dams 
and barriers is the Electrical Resistivity Tomography 
(ERT) method. In many cases of dam monitoring, 
electrical tomography is performed along the dam 

crest and different longitudinal levels of the dam 
body [1] – [5]. This is due to the influence of the 
shape of the dam and its complex structure on the 
anomalies of apparent resistivities and the lack of 
reliable interpretation methods for profiles located 
across the body of the dam. However, with 
longitudinal soundings of the foot of the dam, where 
there may be leaks, and even flushing the dam, 
electrical tomography becomes problematic. A 
change in the water level at the upstream also affects 
the results of tomography. To solve such problems, 
modeling the electrical tomography of a dam across 
its body comes to the fore. In this paper, the authors 
simulate the electrical sounding of a dam across its 
body, using the quasi-three-dimensional model [11] 
based on the integral equation method [12] – [18] and 
the Fourier transform [11]. Studies were carried out 
for the following two cases: a) when the water is 
infinitely conductive and distilled for different water 
levels; b) the influence of the position of the supply 
electrode is studied at a constant water level. For both 
cases, curves of apparent resistivity are computed. 
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Figure 1 – The dam model 

Mathematical model. Integral Equation and 
Fourier Transform 

The dam has the shape of a single shaft, to the 
left of which is water (Figure 1). It has been shown 
in the monograph [11] that for the case of 
homogeneous media with non-flat surface, the 
most adequate and computationally low-cost 
method is the Integral Equation Method (IEM). It 
has been also shown in [11] that for the case of 2D 
media with step-wise constant resistivity 
distribution, the corresponding integral equation 
can be reduced to series of 1D integral equations in 
the spectral space. After solving the problem for 
spectral data, the spatial distribution of the electric 
field is calculated using the inverse Fourier 
transform. The described approach significantly 
reduces computational costs for the 3D electric 
field of a point source in two-dimensional media 
[11].The novelty of our approach consists of 
application of the IEM and subsequent Fourier 

transform method to the media with non-flat 
surface, causethis case is not considered before. 

Let us apply the above-mentioned methods to the 
considered problem. The field is excited by the direct 
current flowing down from the electrode 
����, 0,0�	.	The dam is elongated along the y axis, 
the direction of the normal depends only on the x and 
z coordinates of the point ���, �, ��. The point P
with coordinates ����, ��, ��� belong to the surface of 
integration. As shown in the monograph [11], the 
problem of electrical monitoring is reduced to a 
system of integral equations for the density of 
secondary sources (simple layer) distributed along the 
boundaries of contacting media. Let q0(x,y,z) and 
q12(x,y,z) be the densities of a simple layer of 
secondary charges distributed along the dam-air 
surface and along the water-dam boundary. Under the 
assumption that the electrical conductivity of water is 
much greater than the conductivity of the dam body, 
and literally applyingthe method of the monograph 
[11], we write the following integral equations: 
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Here G(x,x′,y,y′,z,z′) is is the Green’s function of 
the problem, which depends on the following 
arguments ���, ��, � � ��, �, �′�. In formulas (1), 
(2), the functions are differentiated along the 
direction of the external normal to the boundary at 
the point ���, �, ��. 

Note that integration over the surfaces ��и ��� 
can be represented as a sequential integration over a 

generator directed along the y axis, and then along 
the contours ��		���	��� respectively. ��is the 
contour of the surface ��, and ��� s the contour of 
���. Since the dam is elongated along the y axis, 
formulas (1), (2) can be written in the following 
form: 

 
 

����, �, �� � �
��� � �

�
������,����,����� �

�
�� ��� ����� �����, ��, ��� �

����
� � �

����,,����,����� ������       (3) 
 
 

�����, �, �� � ᴂ��
��

�
���� � �

1
����, ����, ����� � ᴂ��

1
��� ����

��
������, ��, ��� �

����� �
������

����, � � ��, ����
� 

ᴂ��
�
��∬����

�� �����, ��, ��� �
����

� � �
����,����,����� ��

����                                   (4) 
 
 
The internal integrals in equations (3), (4) are 

the convolution integrals of the function 
�����, ��, ��� and �

���� � �
�

����,����,�����with respect 
to the coordinate y. The coefficient ᴂ�� depends on 
the resistivities of the dam and the water, and is 
equal to +1 or -1 for a conductive and non-
conductive fluid, respectively.  

Next, we move to the spectral space. Since the 
functions ����, �, ��, �����, ��, ���,	 �
���� � �

�
����,����,�����  and  �

��� � �
�

����,����,����� are 

even functions with respect to the variable y, we use 
the partial cosine Fourier transform [11]: 
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 By virtue of the two-dimensional geometry of 

the medium, the normal n does not depend on the 
coordinate y; therefore, the Fourier transform and 
differentiation commute. 

 Spectra �����, ��, ��,	 ������, ��, ���,	 

�
����
� � � �

����,��,�����	 and �
���
� � � �

����,����,����� are 

the amplitudes of spatial harmonics with respect to 
frequency. Then the integral equation (3) after the 
cosine Fourier transform takes the form: 
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of the functions under convolution.  
Hence, 
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 We perform the same procedure for the integral equation (4): 
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So, the equation (4) takes the form: 
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Integral equations (6), (7) is the cosine Fourier 

transform of the system of integral equations (1), 
(2). 

For a homogeneous half-space the expression in 
the integral equation (6) is written as: 
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where n is the unit vector of the external normal to 
the surface Г0 at the point (x, y, z). Given by (1у · n) 
= 0, for the spectra ��

���� ���� �
�� ��� �� ���and 

��
���� ���� ��� ��� �� ��� we obtain the following 
expressions: 
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Here �� � �� � ���� � �� � ����� 				��� ��� � ���� � �� � ����. The values of the �,�� 
represent projections of the distances �, ��onto the 
plane хОz respectively.  

For the second integral equation, we have 
similarly: 
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where	� � ���� ��� ��� – is the unit vector of the 
external normal to the surface 	��� also at the point 
���� �� ��. Take into account that (1у · n) = 0:
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In formulas (8)-(10) there is a cosine 

transformation of the functions of the form �
�������

�
�
 

where � � �����. For this transformation we have: 
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where ����� – is the MacDonald function (modified 
Bessel function of the second kind) of the first 
order. In numerical solutions of integral equations 
(6), (7), standard libraries of Fortran for the function 
K1(x) are used to compute �

���� � �
�

|��|� and 
�

����
� � �

|��|�. In order to reduce (6), (7) to the 
system of linear algebraic equation (SLAE), the 
contours �� and ��� are divided into elements	��� и 
���� within which ����� �� ��, ������� ��� ��� are 
considered constant. Having found the spectral 

density of secondary sources ��, we pass to spatial 
variables using the inverse Fourier cosine transform: 
 

~

0 0
0

1( , , ) ( , , ) cos( )y y yq x y z q x k z k y dk




   (12) 

 

Next, based on the computed density of the 
secondary charges, we calculate the electric field 
potential by integration over the corresponding 
surface. 

 
Numerical implementation. 
 
The numerical solution of the integral equations 

was carried out by discretizing formulas (6), (7) and 
(12) on a logarithmic grid with respect to frequency. 
To calculate the cosine – Fourier transform, we 
consider the finite part of the boundaries Г0 and Г12. 
Uniform grids are built at the boundaries of dam-air 
and dam-water. The shape of the boundaries are 
approximated by the radial basis function (RBF) 



9B.G. Mukanova, D.S. Rakisheva

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 11, №1, 4 (2020)

method [19] – [22]. At the dam-air interface, we 
take into account that no current flows into the air; 
and at the water-dam boundary, the current flows 
down depending on the resistivity of the media. The 
supply electrode is located on the dam. In the 
calculations, the height of the water and the position 
of the supply electrode are varied. The field 
potential is computed at points corresponding to the 
location of the measuring electrodes. Then, through 
the potential differences of the field, the apparent 
resistivity of the medium are calculated by standard 
formulas. 

Numerical solutions are made for the following 
cases: 

1. The position of the water-dam boundary was 
changed when the water was supposed to be 
infinitely conductive and distilled. However, even  
 

the second case is quite rare in practice, it is 
interesting from the point of view of mathematical 
modeling. This will determine the nature of the 
anomalies of apparent resistivity if the resistivity of 
the dam material is significantly less than the 
resistivity of the liquid. Based on the calculated 
electric field, apparent resistivity curves are 
constructed. 

2. The position of the source electrode is 
changed when the water level stays the same, 
and curves of apparent resistivity are also 
plotted. 

Figures 2 a) and b) show the density distribution 
of a simple layer q (M) at the air-dam boundary Г0 

when the water is infinitely conductive, the value is 
ᴂ��= +1 and when the water is distilled, with the 
value is ᴂ��= -1, respectively. 

 

а)  

b)  

Figure 2 – The density distribution of a simple layer q (M) on the surface Г0,  
achieved using the Fourier transform method, when water is infinitely conductive(a), and for distilled water (b) 
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Figure 2 shows the distribution of the simple 
layer density q (M) on the surface Г0 obtained after 
the Fourier transform when the water is infinitely 

conductive (a), and when the water is distilled (b). 
In Figure 3 corresponding apparent resistivity 
curves are demonstrated also. 
 
 

Figure 3 – Apparent resistivity curves 
(-) – distilled water, (-) – infinitely conductive water 

 
 

This test shows that for infinitely conductive 
water, the apparent resistivity curve is inverted with 
respect to the second case, as the current flows into 
the water. 

The second test was conducted under conditions 
when the dam resistivity is ρ1=10, and the water 

resistivity is ρ2=100. The position of the supply 
electrode is changed: it was assumed that  
Ароs = 16m, 18m, 20m from the origin, the water 
level does not change and is placed at the point at a 
distance of Сpos = 10m from the origin  
(Figure 4). 

 
 

Figure 4 – Curves of apparent resistivity at the position of the source electrode  
(-) Ароs = 16m, (--) Ароs = 18m, (…) Ароs = 20m

 
 

 Figure 4 illustrates the apparent resistivity 
curves at the positions of the source electrode Ароs 
= 16m, Ароs = 18m and Ароs = 20m. It can be seen 

that the proximity of the liquid to the source 
electrode increases the amplitude of the anomaly in 
the apparent resistivity of the medium. 
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 Conclusion 
 
 In a numerical solution, there is an investigation 

of the behavior of the apparent resistivity curves for 
infinitely conductive and distilled water. It is shown 
that in these cases the anomalies are of the opposite 
nature. These curves are in agreement with 
geophysical studies. It is also shown how the 
position of the source electrode affects the apparent 
resistivity curves at a constant water level. 

 Authors express their deep gratitude to the 
anonymous reviewer whose comments helped 
improve the presentation of the results.  
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