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Soliton surface associated  
with the oriented associativity equation for n=3 case 

 
 

Abstract. This paper describes the soliton surfaces approach to the Oriented Associativity equation for 
n=3 case. The equation of associativity arose from the 2D topological field theory. We constructed the 
surface associated with the Oriented Associativity equation for n=3 case equations using Sym-Tafel 
formula, which gives a connection between the classical geometry of manifolds immersed in Rm and the 
theory of solitons. The so-called Sym-Tafel formula simplifies the explicit reconstruction of the surface 
from the knowledge of its fundamental forms, unifies various integrable nonlinearities and enables one 
to apply powerful methods of the soliton theory to geometrical problems. The soliton surfaces approach 
is very useful in construction of the so-called integrable geometries. Indeed, any class of soliton 
surfaces is integrable. Geometrical objects associated with soliton surfaces (tangent vectors, normal 
vectors, foliations by curves etc.) usually can be identified with solutions to some nonlinear models 
(spins, chiral models, strings, vortices etc.). We consider the geometry of surfaces immersed in 
Euclidean spaces. The Oriented Associativity equation plays a fundamental role in the theory of 
integrable systems. Such soliton surfaces for the Oriented Associativity equation for n=3 case are 
considered, and first and second fundamental forms of soliton surfaces are found for this case. Also, we 
study an area of surfaces for the Oriented Associativity equation for n=3 case. 
Key words: the Oriented Associativity equation, nonlinear equation, the Lax pair, first and second 
fundamental forms, soliton surfaces, area of surfaces. 

 
 
Introduction 
 
The equation of associativity relation for genus 

0 Gromov-Witten (GW) invariants completely 
solves the classical problem of enumerating 
complex rational curves in the complex projective 
space Pn [1]. For genus-0 GW-theory, the 
associativity of quantum cohomology, which is 
equivalent to equation of associativity, led to 
Kontsevich’s solution to the classical problem of 
counting degree d rational curves passing through 
3d − 1 general points in P2 [2]. A system of PDE, 
called open WDVV, that constrains the 
bulkdeformed superpotential and associated open 
GW invariants of a Lagrangian submanifold L ⊂ X 
with a bounding chain [3]. In this paper we shall 
consider so-called nonlinear partial differential 
equations of associativity in 2D topological field 
theories (see [4-7]) and give their description as 
integrable nondiagonalizable weakly nonlinear 
systems of hydrodynamic type. For systems of this 
type corresponding general differential geometric 
theory of integrability connected with Poisson 
structures of hydrodynamic type can be developed. 

For an arbitrary solution of the open equation of 
associativity, satisfying a certain homogeneity 
condition, constructed a descendent potential in 
genus 0 [8]. For any mechanics, given by the 
metric and the third order Codazzi tensor, it is 
possible to obtain the superfield Lagrangian [9] by 
solving a simple differential equation. Universal 
algebraic structure, closely related with that of the 
equation of associativity, govern quantum 
correlation functions of every quantum field theory 
[10]. Topological approach provides a general 
framework for lifting relations via morphisms 
between not necessarily orientable spaces [11]. For 
isotropic (so(n)-invariant) spaces provided 
admissible prepotentials for any solution to the 
curved equation of associativity [12]. For every 
flat-space equation of associativity solution subject 
to a simple constraint provided a curved-space 
solution on any isotropic space, in terms of the 
rotationally invariant conformal factor of the metric 
[13]. Flat structure was introduced by K. Saito and 
his collaborators at the end of 1970’s. 
Independently the equation of associativity arose 
from the 2D topological field theory. B. Dubrovin 
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unified these two notions as Frobenius manifold 
structure [14]. The concepts of Frobenius manifold 
and Lenard complex must be strictly related. They 
provides two ways of looking at the same object 
from different perspectives and by using different 
geometrical structures [15].  In paper [16]compared 
two different geometrical interpretations of the 
equation of associativity of 2D topological field 
theory. The first is the classical interpretation 
proposed by Boris Dubrovin, based on the concept 
of Frobenius manifold. The second is a novel 
interpretation, based on the concept of Lenard 
complex on a Haantjes manifold. In paper [17]. 
determined correlators of topological quantum field 
theories and provided explicit solutions to the 
equation of associativity. 

The equation of associativity, in general, have 
the following form [4,18]: 

 
3 3

3 3

=

,

, , , {1,..., },

pq
i j p q k r

pq
j k p i q r

F F
t t t t t t

F F
t t t t t t

i j k r n





 
     

 

     

 

 

 
where F  is a prepotential,   is a metric. 

The Associativity equation, or WDVV 
equation, plays a fundamental role in the geometric 
theory of Integrable Systems. Its solutions define 
Frobenius manifolds, which correspond to 
integrable systems; Frobenius manifolds also play a 
fundamental role in the theory of quantum 
cohomology and Gromov - Witten invariants. 
These connections were shown by B. Dubrovin in 
his seminal paper [19]. 

In this paper we shall consider so-called 
nonlinear partial differential equations of 
associativity. 

The nonlinear partial differential system of 
equations: 
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on n unknown functions (ci) of n  independent 
variables (aj) was introduced in [19] as a 
generalization of the Associativity equations. Its 
solution define F -manifolds, which are still in 
correspondence with integrable systems. The far-

reaching implication of this generalization are an 
active subject of study: flat and bi-flat F -
manifolds have interesting connections with 
Painlevé equations [20-22]; see also the papers [23-
24] devoted to coisotropic deformations. We call 
the system (1) the Oriented Associativity equation. 

 
Soliton surface associated with the Oriented 

Associativity equation for 3=n  case 
 
The Oriented Associativity equation admits the 

scalar linear spectral problem 
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(see, for instance, [25]) that ensure that the 
equation is integrable as it provides a Lax pair. 

We observe that the Associativity equation [26] 
can be obtained from (1) by the potential reduction 

mimi Fac = , where ks  is a constant 
nondegenerate symmetric matrix. 

The system of quadratic equations [26] 
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is the Oriented Associativity equation in the 

simplest case 3=n . It is endowed by the Lax pair  
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In the following sections we work with the 

system (2). 
 
First fundamental form of a surface 
 
The corresponding Lax pair for the Oriented 

Associativity equation for 3=n  case to the system 
(2) is given by  
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 Ux =                            (3) 
 

 Vt =                            (4) 
 

where AU =  and BV = . Here A  and B  
matrices defined as follows: 
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Geometrical objects associated with soliton 

surfaces  usually can be identified with solutions to 
some nonlinear models [27-28]. The scalar square 
of the total differential dr  of the radius-vector of 
the current point of a surface is called the first 
fundamental form I  of the surface [29]: 

 

,d= 2rI  
In expanded form, it is recorded as  
 

,ddd2d= 2222 trtxrrxrI ttxx              (6) 
 
where x  and t  are the curvatures. 

To construct the surface, we now use the Sym-
Tafel formula [30]. It has the form  
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where jjrr =  is the matrix form of the 
position vector of the surface,   is a solution of 
the equations (3)-(4). We have  
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In terms of the Lax representation, equation (6) 

will be rewritten as follows:  
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We now turn to finding the first fundamental 

form of soliton surface for the Oriented 
Associativity equation for n = 3 case to the system 
(2) 
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Substituting equations (8)-(10) into equation 

(7) we have the first fundamental form of soliton 
surface for the Oriented Associativity equation to 
the system (2) 
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Second fundamental form of a surface 
 
The scalar product of the total differential of 

the second order r2d  of the radius-vector r  of the 
current point of a surface by the orbit of the normal 
n  at this point is called the second quadratic form 
of the surface:  
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In an expanded form, it is recorded as  
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where the coefficients 11b , 12b  and 22b  are given 
as  

,=11 nrb xx                       (12) 
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,=12 nrb xt                          (13) 
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The normal vector n  is given by 
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Thus, the equation (12)-(14) is written as 

follows  
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Substituting equations (15)-(17) into equation 

(11) we have the second fundamental form of a 
soliton surface for the Oriented Associativity 
equation to the system (2) 
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Area of surfaces for Oriented Associativity 

equation for 3=n  case 
 
In this section we consider the area of surfaces 

for the Oriented Associativity equation for 3=n  
to the system (2). Area of surfaces is evaluated by 
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where the matrix A  is defined as in equation (5). 
So, that 0=],[ UU , we have 
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Area of surfaces (18) for the Oriented 

Associativity equation to the system (2) is given by 
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Conclusions 
 
In this work we considered the Oriented 

Associativity equation for 3=n  case. Soliton 
surfaces for the Oriented Associativity equation for 

3=n  case was obtained. Area of surfaces for the 
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Oriented Associativity equation for 3=n  case 
was investigated. 
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