
© 2019 al-Farabi Kazakh National University   

International Journal of Mathematics and Physics 10, №2, 57 (2019)

Int. j. math. phys. (Online)

IRSTI 29.19.09                                                                               https://doi.org/10.26577/ijmph-2019-i2-9 
 

 
Pawitar Dulari 

 

Department of Physics, Government Degree College Dharamshala (H.P.) INDIA-176215 
*e-mail:pawitar.ibs@gmail.com 

 

Thermoelastic properties of solids
based on equation of state 

 
 

Abstract.Thermoelastic properties of solids at high pressures are studied using various equations of 
state (EOS) such as Eularian Birch-Murnaghan EOS, Poirier-Tarantola logarithmic EOS and the 
generalized Vinet-Rydberg EOS. We have determined the pressure derivatives of bulk modulus upto 
third order which are useful for predicting the Grüneisen parameter and its volume derivatives. 
Expressions have been obtained for the derivative properties based on different equations of state, and 
extrapolated to the limit of extreme compression. It is found that all the three equations lead to a 
common relationship between second and third pressure derivatives of bulk modulus in the limit of 
extreme compression. 
Keywords: Equations of state, pressure derivatives of bulk modulus, Grüneisen parameter, extreme 
compression behavior. 

 

Introduction

Equations of state at high pressures have been 
extremely useful for studying the thermoelastic 
properties of solids [1-5]. Bulk modulus and its 
pressure derivatives are important physical 
quantities for understanding the thermoelastic 
properties [6, 7] such as the Grüneisen parameter  
and its volume derivatives. is related to the 
thermal and elastic properties of materials by the 
formula [8, 9]. 
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Where  is the coefficient of volume thermal 

expansion, KT and KS are isothermal and adiabatic 
bulk modulus, CV and CP are the specific heats at 
constant pressure and constant volume 
respectively. 

The second Grüneisen constant q used in the 
literature is defined as [10]. 
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The third order Grüneisen parameter is defined 

as 
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or 

 = 1 – q + 
2
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In order to emphasize the importance of q and 

 in determining higher order thermoelastic 
properties we refer to the following thermodynamic 
identities [9]. 

 
S = K��  – 1 + q –γ – C��               (5) 

 
T = K��  – 1 + q + C��                (6) 
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where 

S is the adiabatic Anderson-Grüneisen 
parameter 

S = S
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T is the isothermal Anderson-Grüneisen 

parameter 

T = T
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'

SC = ( ln CV/ ln V)S                  (11) 
and 

'

TC = ( ln CV/ ln V)T                (12) 
 
Thusq and  appearing in esquations [5–8] are 

useful parameters reduced to investigate higher 
order thermoelastic properties. We make use of the 
generalized free-volume formula for determining 
qand . 

 
Generalized free-volume formulation 

According to the generalized free-volume 
formula [8, 11], is related to pressure P, 
isothermal bulk modulus K and its pressure 
derivative as follows: 
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The parameter t takes different values for 

different derivatives of , based on different 
approximation. Thus t = 0 for Slater’s formula [12], 
t = 1 for the formulation developed by Dugdaleand 
MacDonald [13], t = 2 yields the free-volume 
formula [9], ad t = 2.35 resulted in a molecular 
dynamical calculation by Barton and Stacey [14]. 
The assumptions and approximations on which 
Equation [13] is based, have been reviewed in a 
comprehensive manner by Stacey and Davis. 
Equation [13] can be applied to different types of 
metals, solids as well as insulators, because it is 

derives from the fundamental relationship between 
thrmal pressure and thermal energy [8]. The 
pressure dependence or volume dependence of can 
be studied with the help of Eq. [13] using different 
equations of state [10, 15]. Expressions for the 
volume derivatives of , represented by q and  are 
derived from Eq. (13) considering t to be 
independent of pressure, i.e. dt/dpT = 0. It has been 
found by Stacey and Davis [8] that  varies slowly 
with pressure, and constant  might be a good 
approximation. Although there is no fundamental 
reason for believing that  is constant, it is much 
better assumption constant q often assumed in 
mineral physics [16]. 

It is more convenient to rewrite Eq. (13) in an 
equivalent form as follows (13). 
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The following equations are then obtained from 

the differentiation of Eq. (13) 
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Eqs. (16) and (17) yield 

(q+) = –  – 
2 2 2 2[(K K /KK )-(2/KK ) (K d ε/dP )
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Values of γ, q and  can be calculate by 

knowing the pressure derivatives of bulk modulus. 
These pressure derivatives can be determined with 
the help of equations of state. 

 
Analysis based on equations of state 

Higher pressure derivatives of bulk modulus 
are determined here using some important 
equations of state given below: 
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Birch-Murnaghan fourth order EOS 

This EOS has been derived from the Eulerian 
strain theory [17]. The expressions for P, K, ��, 
KK�� and K�K��� obtained from this equation of 
state are given below: 
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where x = V/Vo and 

A= 0K K��� + (K��  – 4) (K��  – 5) + 59/9       (24) 
 

B=3 0K K��� + (K��  – 4) (3K��  – 13) + 129/9    (25) 
 

C=3 0K K���+ (K��  – 4) (3K��  – 11) + 105/9    (26) 
 

D= 0K K��� + (K�� – 4) (K��  – 3) + 35/9         (27) 
 
Poirier-Tarantola logarithmic fourth-order 

EOS 

Poirier and Tarantola [18] have obtained 
logarithmic EOS using the Henckystrain which is 
represented by (1/3) ( ln V/Vo). The expressions 
based on this EOS s follows: 
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where x = V/Vo and Q = 0K K��� + K��� – 3K��   + 3

 
Generalized Vinet-Rydberg Eos 

Stacey [19, 20] has generalized the Vinet EOS, 
so as to make it compatible with infinite pressure 
value K�� , for the pressure derivative of bulk 
modulus the equation thus formulated by Stacey is 
known is the generalized Rydberg EOS. 
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, for K�� = 2/3, Eq. (33) reduces 

to the original Rydberg EOS. 
The Birch-Murnagham EOS, the logarithmic 

EOS and the generalized Rydberg EOS can be 
written in the following form  

 
K/P = ��� +F(x)                      (38) 

 
Differentiating   Eq (38) with the respect to ‘P’ 

successfully 
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Where  x =V/V₀ 
In case of birch murnagham fourth order EOS 

the value of F(x) is 
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In case of the logarithmic fourth –order EOS 

the value of F(x) is 
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In case of the generalized Rydberg EOS the 

value of F(x) is  
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Results and Discussions 

We can derive expressions for the derivatives 
of F(x) such as F'(x), F''(x) and F'''(x) by using Eqs. 
(42-44). In the limit V0, P, K, but their 
ratio P/K remain finite such that (P/K) = 1/K�� . 
Also (1–K��/K), KK�� and K2K��� tend to zero in 
the limit of infinite pressure, but their ratios 
KK��(1–K�P/K) and K2K���/KK��  remain finite 
[6,22]. At extreme compression x 0, we have 
F(x)0, x F'(x) 0, x2 F''(x) 0 and x3 F'''(x) 
0for all the equations of state based on Eqs. (38-
41) using the calculus, we have 

 
2( ) ( )

( )
xF x x F x

xF x
 


= 

=
2( ) ( ) 2 ( ) ( )

( ) ( )
F x xF x xF x x F x

F x xF x
     

 
   (45) 

 
In the extreme compression limit Eqs. (39) and 

(40) gives 
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Eqs. (40) and (41) gives 
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Eqs. (45 – 47) then yield 
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The Birch-Murnaghan Fourth Order EOS gives 

using Eqs. (19-23) 
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The logarithmic fourth order EOS using Eqs. 

(28-32) 
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The generalized Vinet-Rydberg EOS using 

Eqs. (33-37) gives 
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All these equations of states satisfies the 

common relation (48). This relationship can be 
useful for investigating further the thermoelastic 
properties of solids at high pressures [6, 8, 23, 24]. 
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