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Stuart number effect on 3-d mhd
convection in a cubic area

Abstract. In this paper mathematical modeling of magnetohydrodynamics natural convection in three
dimensional area at different Stuart numbers has been considered. The magnetic field is considered
vertically and results have been shown at different planes of 3-D enclosure. The modeling of natural
convection is based on the solution of a filtered unsteady three - dimensional Navier- Stokes equation
and the equation for temperature. The problem is solved numerically: the equations of motion and
temperature — by a finite-difference method in combination with penta-diagonal matrix using the
Adams-Bashfort scheme, the equation for pressure — by spectral Fourier method with combination of
matrix factorization. Change the dynamic of natural convection is gained over the time depending on
the different values of Stuart numbers. As result of modelling, isothermal surfaces, velocity and
temerature contoures, also profiles for different Sturart numbers are obtained.
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Introduction

Natural convection is a phenomenon that occurs
in many engineering applications, resulting in
airflow near surfaces of solid particles or liquids,
such as airflow in double-glazed windows, airflow
in double-glazed doors of refrigerated display cases
and airflow in gaps or cavities building walls. To
clearly understand, many researchers have devoted
themselves to the study of this phenomenon in order
to enhance or reduce this heat transfer mode.
Natural convection of the flow is one of the most
important problems in fluid mechanics and [1,2].

Magnetic field convection has been developed
and has been used in recent decades [3-7]. In [8],
two-dimensional mixed convection in a chamber
was solved using the finite volume method. They
examined the sinusoidal boundary condition and the
effect of the ratio of amplitudes, phase deviation,
Richardson number and Hartmann number on the
heat transfer rate. Their results show that the Nusselt
number increases in amplitude ratio. In addition, the
Nusselt number increases with the phase deviation
to @ =7/2, and then decreases. In [9], the results

for a laminar mixed convection flow in the presence
of a magnetic field in the upper cavity controlled by
a cover with a set of Graskoff and Hartmann
numbers are presented. They used the finite volume
method to model the equations and concluded that
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the transfer rate decreases with the Hartmann
number.

In [10], the Boltzmann MRT double lattice
method was applied to simulate three-dimensional
MHD of natural convection flow in a cubic cavity.
Two different populations with models D3Q19 and
D3Q7 were used to determine the flow field and
temperature, respectively. The effect of the
Hartmann and Grashof numbers on the projection of
the flow trace and the heat transfer rate on various
surfaces of the cavity, where the flow structure and
isotherms in different planes of the casing change
sharply due to an increase in the Hartmann and
Grashof numbers, since the magnetic field is strong,
the rates are suppressed.

Three-dimensional nanofluidic non-Darsian
natural convection is presented in the presence of
Lorentz forces [11]. The lattice Boltzmann method
is selected for mesoscopic analysis. The simulation
results are presented for various amounts of Darcy,
Rayleigh, and Hartmann numbers, and the volume
fraction of A1203. The results show that convection
dominates at large Darcy and Rayleigh numbers;
therefore, distorted isotherms are observed at high
Darcy and Rayleigh numbers. The motion of the
nanofluid increases with increasing volume fraction,
the Rayleigh and Darcy numbers, but decreases with
increasing Hartmann number. The temperature
gradient on a hot surface decreases with increasing
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Hartmann number, while it increases with
increasing Darcy number, Rayleigh number. The
influence of the use of nanoparticles reaches a
maximum degree for the maximum Hartmann value
and the minimum value of the Darcy and Rayleigh
numbers.

In [12], convective flows and heat transfer in a
magnetic field were studied. They also use the finite
volume method and report that the heat transfer rate
is increasing. In [13], the LBM method was used to
solve a two-dimensional MHD flow in an inclined
cavity with four heat sources. They thought that the
double model of multiple time relaxation models the
equations of momentum and energy, and explores
the effect of the Hartmann number on fluid flow and
heat transfer. They show that the average Nusselt

number decreases due to an increase in the
Hartmann number for all Rayleigh numbers.
In [14], MHD natural convection in a

three-dimensional square cavity with a sinusoidal
temperature distribution on one side wall was
investigated using the new Boltzmann lattice
method with a double relaxation time model using
nano-liquid copper-water. The influence of various
parameters, such as the Rayleigh and Hartmann
numbers, the volume fraction of nanoparticles, and
the phase deviation on heat transfer, was considered.
Concerning the present results, the following
conclusions are drawn: Convection heat transfer
decreases with increasing Hartmann number, and
the average Nusselt number decreases for both the
left and right walls, but the decrease for the right
wall is greater than for the left. When the Hartmann
number increases from 0 to 50, the average Nusentt

number decreases by 64% and 70% for the left and
right walls, respectively.

In this paper, we consider a mathematical model
of the problem of natural convection under the
influence of a vertical magnetic field, where the
effect of the Start number on convection of the
MHD flow was obtained.

The applied magnetic field B = -H 0]’ effect
in the Navier-Stokes equations is the inclusion of
the Lorentz force to the momentum equations
F,=JxB, where J=0(E+V xB)-is electric

current density, E - is electric field strength, which
we set equal to zero, and o is electric

conductivity, ¥ =u,i +u,] +usk
fluid, and all of these in combination we obtain
F,=0c(V'xB)xB - Lorentz force, where

Fy = old +uy] +usf)x (Ho )< (~H,J) s

velocity of

in detail, after using the properties of the
multiplication of unit vectors, we obtain
£ = U(”lHolg —usHyi ) x (=Hy J), or
F =o(-uHY —u,HXk) and
F=FK+F+F , where

F, =—ouH;, F, =0, Fy=—-ouHj.

The problem is based on solving non-stationary
equations of magnetohydrodynamics with filtration
in combination with the continuity equation,
equations for temperature, equations of motion of
charged particles, taking into account the continuity
equation in a Cartesian coordinate system in
dimensionless form

where u; (i =1,2,3) are the velocity components,
F =—Nu,, F, =0, F;, =—Nut; -non-dimensional
_olLH, Hd'

=—— is the
PV, Re

Lorentz force [10], N

Int. j. math. phys. (Online)

%_FM:_@_}__i % E+i9’

ot Ox; Ox; Redx; | Ox; Re” Pr

ou;

—+=0, 1
o (1
00 omo)_ 1 0|00

ot ox; RePr dx; | Ox; ’

where Ha=H)L\o/u -

Hartmann number, /7 - magnetic field strength, o
is the conductivity of the medium, which is
determinedfrom plasma physics.

Stuart number,
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U, = \JaD(T} = T,)L, — characteristically velocity,

p is the full pressure, [ is the time,
O0=T-T,) (T, -T;)

temperature in ionosphere, where 7, and 7; are

non-dimensional

the respective temperatures of the minimum and
3
_ag(l,-T)L3
vD
-Rayleigh, where « is volumetric thermal
expansion coefficient, g€ — acceleration due to

: |Ra .
gravity, Re = P—a is the Reynolds number,
T

maximum of the area, Ra

Pr D —  (diffusion

Prandtl

number,

coefficient, L is the typical length, v is the
kinematic viscosity coefficient, O is the density of
the flow.

A schematic picture of the computational
domain is shown in Figure 1, where the left wall -
indicated by the blue color, corresponds to the low
temperature of flow. The right wall layer -
highlighted in red, corresponds to high temperature
of the flow.

Initial conditions for temperature, velocity
components are set zero in all directions of the

1

domain. The boundary conditions imposed for
temperature is Dirichlet on the right and left
boundary, and Neumann on the other directions of
the domain. The velocity components are equal to 0
in all directions.

it

[ ]n

Figure 1 — Illustration of the problem statement

Numerical method

To solve the problem of homogeneous
incompressible MHD turbulence, a scheme of
splitting by physical parameters is used:

3 1

—*\n+1 —\7
L (1/[ ) (u) _ 1 vZ(ﬁ*)nJrl — vZ(ﬁ)n +_Kn __anl’
At 2Re 2Re 2 2
v(ﬁ*)n+1
In. A p=——-"—,
’ T
(ﬁ)n+l _ (1,7*)’1+1
III. =-Vp,
t
0" -6" 1 _,-n0 1 5= (3 1
IV. - VO™ =—VEO"+| =G"-=G"
At 2Pe 2Pe 2 2
where
_ . Ra convective and diffusion terms of the intermediate
p " p " p i d diffusi f the 1 di
K" =—"Vyu" +F" + Re? Pre ) velocity field a finite-difference method in

G" =—(u"V)0" where Pe=RePr — Peclet
number.

During the first stage, the full magneto
hydrodynamic equation system is solved without
the pressure consideration. For approximation of the
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combination with penta-diagonal matrix is
used,which allowed to increase the order of
accuracy in space. The numerical algorithm for the
solution of incompressible MHD turbulence is
considered at [15].

At the second step, the pressure Poisson
equation is solved, which ensures that the continuity
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equation is satisfied. The Poisson equation is . ., 3AL .
transformed from the physical space into the O =0, =~ 5 [Ar]i, .+
spectral space by using a Fourier transform. To
-di ' i i At At At 1
solve the three cl.lmeqsmnal P.OISS.OI‘I quatlon, the + 20 ];_P_lk + 2l ary oo x (3)
spectral conversion in combination with matrix e o 2 RePr
sweeping algorithm is developed [15]. The resulting RN NS N
pressure field in the third stage is used to recalculate o0 + o0 + 0°6
the final velocity field [16]. axlz N 8x22 N 8x32 N
At the fourth stage, the equation for temperature b h b
is solved by using Adams-Bashforth scheme.
Consider the temperature distribution in the  Where
horizontal direction at the pointi, j,k : - o(u,6) nl )
o axl i,j.k
n+l n+l
90, 0w0) , 0(w,0)  ou0) _ +[a(u29)] +£a(u39))
ot ox, ox, ox, @ ox, ik ox, »
1 0’0 N 0’0 N 0’0 ) 1
RePr| ox’ o'  ox o] = Repr
X aze n + 620 n + az_g n
When using the explicit Adams-Bashfort 8x12 ik 6x22 ik 6x32 "

scheme for convective terms and the implicit
Crank-Nicholson scheme for viscous terms,

equation (2) takes the form: Discretization of convective expressions looks

like this:

[Guﬂj‘f, e 0 O)in i * 2700 O) i1 i = 2700 O + W0 O)icrjk 8y

o, 24Ax,

v = Ly L+ O(AY))

ou,0 ‘ (”29)i+1,_,~_2,k —27(u20)1, .y 27(u249)”k—(u249)
bk 24Ax, 24Ax,

ox,

6u3t9 _ (u39)i,j,k—2 —27 (uBH)i,j,k—l 27 (u39)i,j,k - (u30)i,j,k+1 4
‘i,i,k = + +O(Ax;).
Ox, 24 Ax, 24Ax,

Discretization of diffusion conditions looks like this:

82_9 o - (9)i+2,j,k +16- (H)Hl,j,k -30- (9)5,‘/,k +16- (H)i—l,j,k - (9)5—2,j,k .
ox? )k 12Ax7 ’
@ _~ (9)1',_;‘+2,k +16- (6’ )i, vk —30- (9)1‘, i T16: (g)i,_j—Lk - (H)i,_j—Z,k )
oy ik 12Ax? ’
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0’0 = (e)i,j,k+2 +16- (e)i,j,k+1 -30- (e)i,j,k +16- (g)i,j,k—l - (Q)i,j,k—Z )
8x32 i, j,k+% 1 2A>c32 ’
where
(u 0) | T M + 9u1i,j,k + 9u1i—1,j,k Wik |- 01k 90, ;4 +90 1 4k =0 i )
17 i,j .k 16 16 ’
( 9) _ei,j+2,k +99"’f“’k +99’?1¥k _ei‘l’f‘l’k U2k +9u2i+1,j,k +9u2i,j,k Uk
u,0). . = ) :
2k 16 16

(u 9) [~ 0 k2190 ;41 +96; ik =61 i TUs e T 9u3i+l,j,k + 9u3i,j,k Uk |
0) = )
Jk 16 16 ’

Then the left side of equation (3) is denoted by . ﬁ . 1 . az_q B
9i . Wk RePr | ox? )
i,j,k
n+l n 2
9ijk = 0 i:],j,k -0 ijk “) _g; a_q —
' 2 RePr (ox] )
i,j,k
From equation (4) we find ["jlk At 1 0’q 3At (hr]
5Js - | —= =——\Nnr ” +
2 RePr(oy) 2
n+l _ n 7
ik =4 . T0 Pk At »
. il : +—-[hr]i;, +Adar]
Replacing all 6"/, from the equations (13), 2 v ”
we obtain Equation (5) is converted to
At 190 A1l 0 A1 0
__.—._2__.—._2__.—.—2 ql,],k:dl,j,k (6)
2 RePr oxf 2 RePr ox; 2 RePr ox;
where
3At " At e "
di jo == (WY = e e+ Aar]?

Assuming that equation (6) has second-order accuracy in time, we can instead solve the following

equation:
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At 1 8t .
1-=._— .= -d . 7
2 RePr 8)(22 j|{ 2 RePr ax32 i|qi,j,k i,j,k ( )

LA Lot A 1
2 RePr ox’

We can show that equation (7) is an
approximation O (At“ ) to equation (6).

Since the difference between qz s and g;
has a higher order, we return to the same notation
and justuse ¢; ; ;.

To determine ¢
i+5, Jik

the equation (7) is solved
in 3 stages:

At 1 @7
}Ai,j,kzdi,j,k (8)

At 1 0?
{ :|Bi,j7k:Ai,j,k )

At 1 82}
l-—— ——q; e =By ;5 (10)
{ 2 RePr ox; | ’

At the first stage, the 4; ;x search is carried out

in the direction of the x; coordinates:

a1 (oa)"
I A B
MK RePr (éxlz l;k bk

A 1T - Ay jio 416 Ay 5 =304, 41624, — A5 50 d
Wk RePr 12Ax? bk
Sy Ay =168y Ay +(1+3008) -4, 5 =160 Ay 48124, 5 =d; (11)

At
24-Re-Pr-Ax,
This equation (11) is solved by the method of

where s, =

the penta-diagonal matrix, which determines 4, ik

The same procedure is repeated further for

directions X, in the second stage, namely, B; ik is

determined by solving equation (9), and the solution
from the first stage, as the coefficient on the right,

and the s coefficient in the penta-diagonal matrix
At
24-Re- Pr- Ax,

third stage, ¢, ;, is solved using a similar

are replaced by s, = . Finally, in the

penta-diagonal system shown in equation (9).
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Once we have determined the value ¢, ; ,, we

n+l
find 6}

1
n+l _ n
ik =ik T ei,j,k
1
The other components of temperature 9;,: are

solved in a similar way.

Simulation results

The results of modeling the imposition of a
vertical magnetic field is obtained,where the lateral
distribution of the temperature field is pronounced.
The Grashof number is chosen G7r =20000 , the
Prandtl number Pr =0.09, the Stuart number has the
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following values: 1) N=0;2) N=0.09; 3) N=2.16,
kinematic viscosity v =0.013 diffusion
coefficient equal to D =0.14 For calculations, the
mesh size is 34x34x34 . The size of the
computational domain is equal to

L =2r,L, =2r, Ly =27, which corresponds to
the directions x;,x,and x;.

In this paper effect of Stuart number on
isothermal surfaces for differentStuart numbers is

shown at Figure 2. It is seen that isothermal surfaces
changeconsiderably and gradient of the boundary
layer declines with increasing of Stuartnumber, so
heat transfer rate, which depends on the temperature
gradient, graduallydecreases with increasing
magnetic field, which indicates a weakening of the
overallheat transfer effect. These trends were also
discovered [17-19], who also studiednatural
convection or Rayleigh Bernard convection under
the influence of a magneticfield.

-

- L

Figure 2 — Isothermal surfaces for various Stuart coefficients

)N =0:b) N =0.09:c) N =2.16 at Gr = 20000

The contours of vertical velocity
components, and temperature contours on the
different planes of the enclosure are very
important for understanding the trend offlow, so
present results for the different locations of the
cavity have been shown infigures 4 and 5. It is
shown at figures 4-5 that, increasing Stuart
number isothermallines become parallel to the
walls and temperature gradient on the wall
declines, therefore heat transfer rate decreases.

As for the physics of the influence of MHD on
the structure of natural convection flows and heat
transfer, this is due to the fact that in MHD flows the
motion of vortex structures perpendicular to
magnetic fields, i.e. horizontally oriented vortex
cells, strongly suppressed due to the anisotropic

International Journal of Mathematics and Physics 10, Ne2, 36 (2019)

effect of the magnetic field. This is recognized by
the universal effect of magnetic fields, which is
theoretically interpreted in [20]. Moreover, another
important characteristic of the effect of the vertical
magnetic field is that when the magnetic fields are
stronger, the vortex structures will be more regular
and will be shown parallel to each other.

Consequently, thermal convection caused by the
movement of the vortex cells will decrease due to
the amplification of magnetic fields.

Figures 6-7 show a longitudinal dimensionless
temperature and velocity profile, respectively, for a
different number of Stuart 1) N =0;2) N =0.09
3) N =2.16 . It is observed that the solution has a
linear velocity dependence along the transverse
direction.
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Figure 3 — Contours of x; vertical velocity components on x, = 0.5 plane for different Stuart numbersa)

N =0;b) N=0.09,c) N=2.16 at Gr =20000
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Figure 4 — Temperature contours on x; = 0.5 plane for different Stuart numbersa)

N =0;b) N=0.09c) N=2.16 at Gr =20000
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Figure 5 — Temperature contours on X, = 0.5 plane for different Stuart numbersa)
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N =0;b) N=0.09c) N =2.16 at Gr =20000
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T T
1) Nst=0, Ha=0, Gr=20000 ——
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Figure 6 — Temperature profile for different values of the Stuart number

DN =0;2) N=0.09;3)N =2.16 at Gr =20000 .
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Figure 7 — Velocity profile for different Stuart values
DN =0;2) N=0.09;3)N =2.16 at Gr =20000 .
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Conclusion

MHD natural convection in a three dimensional
area at different Stuart numbers with temperature
distribution on side wall has been considered by
finite difference method with spectral method.

To solve the equations of flow motion and
temperature, the finite difference method is used in
combination with a pentadiagonal matrix, and
solved by using the Adams-Bashfort scheme. The
Poisson equation is solved by spectral method using
the fast Fourier transform.

Thus, the following conclusions are drawn:
isothermal surfaces change considerably and
gradient of the boundary layer declines with
increasing of Stuart number, so heat transfer rate,
which depends on the temperature gradient,
gradually decreases with increasing magnetic field,
which indicates a weakening of the overall heat
transfer effect. As for the physics of the influence of
MHD on the structure of natural convection flows
and heat transfer, this is due to the fact that in MHD
flows the motion of vortex structures perpendicular
to magnetic fields, i.e. horizontally oriented vortex
cells, strongly suppressed due to the anisotropic
effect of the magnetic field. The effect of the
vertical magnetic field is that when the magnetic
fields are stronger, the vortex structures will be
more regular and will be shown parallel to each
other. Consequently, thermal convection caused by
the movement of the vortex cells will decrease due
to the amplification of magnetic fields.

As result of modelling, isothermal surfaces,
velocity and temerature contoures, also profiles for
different Sturart numbers are obtained.
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