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Abstract. In this paper mathematical modeling of magnetohydrodynamics natural convection in three 
dimensional area at different Stuart numbers has been considered. The magnetic field is considered 
vertically and results have been shown at different planes of 3-D enclosure. The modeling of natural 
convection is based on the solution of a filtered unsteady three - dimensional Navier- Stokes equation 
and the equation for temperature. The problem is solved numerically: the equations of motion and 
temperature – by a finite-difference method in combination with penta-diagonal matrix using the 
Adams-Bashfort scheme, the equation for pressure – by spectral Fourier method with combination of 
matrix factorization. Change the dynamic of natural convection is gained over the time depending on 
the different values of Stuart numbers. As result of modelling, isothermal surfaces, velocity and 
temerature contoures, also profiles for different Sturart numbers are obtained.  
Key words. Natural convection, magnetohydrodynamics, finite difference method, spectral method. 

 
 
Introduction 
 
Natural convection is a phenomenon that occurs 

in many engineering applications, resulting in 
airflow near surfaces of solid particles or liquids, 
such as airflow in double-glazed windows, airflow 
in double-glazed doors of refrigerated display cases 
and airflow in gaps or cavities building walls. To 
clearly understand, many researchers have devoted 
themselves to the study of this phenomenon in order 
to enhance or reduce this heat transfer mode. 
Natural convection of the flow is one of the most 
important problems in fluid mechanics and [1,2]. 

Magnetic field convection has been developed 
and has been used in recent decades [3-7]. In [8], 
two-dimensional mixed convection in a chamber 
was solved using the finite volume method. They 
examined the sinusoidal boundary condition and the 
effect of the ratio of amplitudes, phase deviation, 
Richardson number and Hartmann number on the 
heat transfer rate. Their results show that the Nusselt 
number increases in amplitude ratio. In addition, the 
Nusselt number increases with the phase deviation 
to 2/  , and then decreases. In [9], the results 
for a laminar mixed convection flow in the presence 
of a magnetic field in the upper cavity controlled by 
a cover with a set of Graskoff and Hartmann 
numbers are presented. They used the finite volume 
method to model the equations and concluded that 

the transfer rate decreases with the Hartmann 
number. 

In [10], the Boltzmann MRT double lattice 
method was applied to simulate three-dimensional 
MHD of natural convection flow in a cubic cavity. 
Two different populations with models D3Q19 and 
D3Q7 were used to determine the flow field and 
temperature, respectively. The effect of the 
Hartmann and Grashof numbers on the projection of 
the flow trace and the heat transfer rate on various 
surfaces of the cavity, where the flow structure and 
isotherms in different planes of the casing change 
sharply due to an increase in the Hartmann and 
Grashof numbers, since the magnetic field is strong, 
the rates are suppressed. 

Three-dimensional nanofluidic non-Darsian 
natural convection is presented in the presence of 
Lorentz forces [11]. The lattice Boltzmann method 
is selected for mesoscopic analysis. The simulation 
results are presented for various amounts of Darcy, 
Rayleigh, and Hartmann numbers, and the volume 
fraction of Al2O3. The results show that convection 
dominates at large Darcy and Rayleigh numbers; 
therefore, distorted isotherms are observed at high 
Darcy and Rayleigh numbers. The motion of the 
nanofluid increases with increasing volume fraction, 
the Rayleigh and Darcy numbers, but decreases with 
increasing Hartmann number. The temperature 
gradient on a hot surface decreases with increasing 
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Hartmann number, while it increases with 
increasing Darcy number, Rayleigh number. The 
influence of the use of nanoparticles reaches a 
maximum degree for the maximum Hartmann value 
and the minimum value of the Darcy and Rayleigh 
numbers. 

In [12], convective flows and heat transfer in a 
magnetic field were studied. They also use the finite 
volume method and report that the heat transfer rate 
is increasing. In [13], the LBM method was used to 
solve a two-dimensional MHD flow in an inclined 
cavity with four heat sources. They thought that the 
double model of multiple time relaxation models the 
equations of momentum and energy, and explores 
the effect of the Hartmann number on fluid flow and 
heat transfer. They show that the average Nusselt 
number decreases due to an increase in the 
Hartmann number for all Rayleigh numbers. 

 In [14], MHD natural convection in a 
three-dimensional square cavity with a sinusoidal 
temperature distribution on one side wall was 
investigated using the new Boltzmann lattice 
method with a double relaxation time model using 
nano-liquid copper-water. The influence of various 
parameters, such as the Rayleigh and Hartmann 
numbers, the volume fraction of nanoparticles, and 
the phase deviation on heat transfer, was considered. 
Concerning the present results, the following 
conclusions are drawn: Convection heat transfer 
decreases with increasing Hartmann number, and 
the average Nusselt number decreases for both the 
left and right walls, but the decrease for the right 
wall is greater than for the left. When the Hartmann 
number increases from 0 to 50, the average Nusentt 

number decreases by 64% and 70% for the left and 
right walls, respectively. 

In this paper, we consider a mathematical model 
of the problem of natural convection under the 
influence of a vertical magnetic field, where the 
effect of the Start number on convection of the 
MHD flow was obtained. 

The applied magnetic field jHB


0  effect 
in the Navier-Stokes equations is the inclusion of 
the Lorentz force to the momentum equations 

BJFl  , where )( BVEJ  -is electric 
current density, E - is electric field strength, which 
we set equal to zero, and   is electric 
conductivity, kujuiuV


321   velocity of 

fluid, and all of these in combination we obtain 
BBVFl  )( – Lorentz force, where 

  )()()( 00321 jHjHkujuiuFl


   is 
in detail, after using the properties of the 
multiplication of unit vectors, we obtain 

),()( 00301 jHiHukHuFl


   or 

)( 2
03

2
01 kHuiHuFl


 ,  and 

321 FFFFl  , where 

.,0, 2
0332

2
011 HuFFHuF    

The problem is based on solving non-stationary 
equations of magnetohydrodynamics with filtration 
in combination with the continuity equation, 
equations for temperature, equations of motion of 
charged particles, taking into account the continuity 
equation in a Cartesian coordinate system in 
dimensionless form
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where )3,2,1( iui  are the velocity components, 

33211 ,0, uNFFuNF   -non-dimensional 

Lorentz force [10], 
2 2
0

0 Re
LH Ha

N



   is the 

Stuart number, where  /0LHHa   – 
Hartmann number, H - magnetic field strength,   
is the conductivity of the medium, which is 
determinedfrom plasma physics. 
 


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3010 )( LTTDU   – characteristically velocity, 
 is the full pressure, is the time, 

– non-dimensional 

temperature in ionosphere, where  and   are 
the respective temperatures  of the minimum and 

maximum of the area,  

-Rayleigh, where  is volumetric thermal 
expansion coefficient, – acceleration due to 

gravity,  is the Reynolds number, 

– Prandtl number, – diffusion 

coefficient, is the typical length, is the 
kinematic viscosity coefficient, is the density of 
the flow. 

A schematic picture of the computational 
domain is shown in Figure 1, where the left wall - 
indicated by the blue color, corresponds to the low 
temperature of flow. The right wall layer - 
highlighted in red, corresponds to high temperature 
of the flow.  

Initial conditions for temperature, velocity 
components are set zero in  all  directions  of  the  
 

domain. The boundary conditions imposed for 
temperature is Dirichlet on the right and left 
boundary, and Neumann on the other directions of 
the domain. The velocity components are equal to 0 
in all directions. 

 

 
Figure 1 – Illustration of the problem statement 
 
 
Numerical method 

To solve the problem of homogeneous 
incompressible MHD turbulence, a scheme of 
splitting by physical parameters is used:
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  where PrRePe – Peclet 
number. 

During the first stage, the full magneto 
hydrodynamic equation system is solved without 
the pressure consideration. For approximation of the 

convective and diffusion terms of the intermediate 
velocity field a finite-difference method in 
combination with penta-diagonal matrix is 
used,which allowed to increase the order of 
accuracy in space. The numerical algorithm for the 
solution of incompressible MHD turbulence is 
considered at [15]. 

At the second step, the pressure Poisson 
equation is solved, which ensures that the continuity 
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equation is satisfied. The Poisson equation is 
transformed from the physical space into the 
spectral space by using a Fourier transform. To 
solve the three-dimensional Poisson equation, the 
spectral conversion in combination with matrix 
sweeping algorithm is developed [15]. The resulting 
pressure field in the third stage is used to recalculate 
the final velocity field [16].  

At the fourth stage, the equation for temperature 
is solved by using Adams-Bashforth scheme.  

Consider the temperature distribution in the 
horizontal direction at the point kji ,, : 
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When using the explicit Adams-Bashfort 
scheme for convective terms and the implicit 
Crank-Nicholson scheme for viscous terms, 
equation (2) takes the form: 
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Discretization of convective expressions looks 

like this: 
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Discretization of diffusion conditions looks like this: 
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Equation (5) is converted to 
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Assuming that equation (6) has second-order accuracy in time, we can instead solve the following 

equation: 
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At the first stage, the kjiA ,, search is carried out 

in the direction of the 1x  coordinates: 
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where 
1

1 PrRe24 x
ts




 . 

This equation (11) is solved by the method of 
the penta-diagonal matrix, which determines kjiA ,, . 

The same procedure is repeated further for 
directions 2x in the second stage, namely, kjiB ,,  is 
determined by solving equation (9), and the solution 
from the first stage, as the coefficient on the right, 
and the 1s coefficient in the penta-diagonal matrix 

are replaced by
2

2 PrRe24 x
ts




 . Finally, in the 

third stage, kjiq ,, is solved using a similar 
penta-diagonal system shown in equation (9). 

Once we have determined the value kjiq ,, , we 

find 1
,,
n

kji  
n

kjikji
n

kji q ,,,,
1
,,  

 
The other components of temperature 1n

ijk  are 
solved in a similar way. 

 

Simulation results 

The results of modeling the imposition of a 
vertical magnetic field is obtained,where the lateral 
distribution of the temperature field is pronounced. 
The Grashof number is chosen 20000Gr , the 
Prandtl number Pr =0.09, the Stuart number has the  
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following values: 1) N = 0; 2) N = 0.09; 3) N = 2.16, 
kinematic viscosity 013.0  diffusion 
coefficient equal to 14.0D  For calculations, the 
mesh size is 343434  . The size of the 
computational domain is equal to

 2,2,2 321  LLL , which corresponds to 
the directions 21, xx and 3x . 

In this paper effect of Stuart number on 
isothermal surfaces for differentStuart numbers is  
 

shown at Figure 2. It is seen that isothermal surfaces 
changeconsiderably and gradient of the boundary 
layer declines with increasing of Stuartnumber, so 
heat transfer rate, which depends on the temperature 
gradient, graduallydecreases with increasing 
magnetic field, which indicates a weakening of the 
overallheat transfer effect. These trends were also 
discovered [17–19], who also studiednatural 
convection or Rayleigh Bernard convection under 
the influence of a magneticfield.

 

 
а)     b)     c) 

 
Figure 2 – Isothermal surfaces for various Stuart coefficients 
а) 0N ; b) 09.0N ;c) 16.2N  at 20000Gr  

 
 
The contours of vertical velocity 

components, and temperature contours on the 
different planes of the enclosure are very 
important for understanding the trend offlow, so 
present results for the different locations of the 
cavity have been shown infigures 4 and 5. It is 
shown at figures 4-5 that, increasing Stuart 
number isothermallines become parallel to the 
walls and temperature gradient on the wall 
declines, therefore heat transfer rate decreases.  

As for the physics of the influence of MHD on 
the structure of natural convection flows and heat 
transfer, this is due to the fact that in MHD flows the 
motion of vortex structures perpendicular to 
magnetic fields, i.e. horizontally oriented vortex 
cells, strongly suppressed due to  the  anisotropic   

effect  of  the magnetic field. This is recognized by 
the universal effect of magnetic fields, which is 
theoretically interpreted in [20]. Moreover, another 
important characteristic of the effect of the vertical 
magnetic field is that when the magnetic fields are 
stronger, the vortex structures will be more regular 
and will be shown parallel to each other.  

Consequently, thermal convection caused by the 
movement of the vortex cells will decrease due to 
the amplification of magnetic fields.  

Figures 6-7 show a longitudinal dimensionless 
temperature and velocity profile, respectively, for a 
different number of Stuart 1) 0N ; 2) 09.0N
3) 16.2N . It is observed that the solution has a 
linear velocity dependence along the transverse 
direction. 
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а)     b)     c) 

Figure 3 – Contours of 3x  vertical velocity components on 5.02 x plane for different Stuart numbersа) 
0N ; b) 09.0N ;c) 16.2N  at 20000Gr  

 
 

 
а)     b)     c) 

 
Figure 4 – Temperature contours on 5.01 x  plane for different Stuart numbersа) 

0N ; b) 09.0N ;c) 16.2N  at 20000Gr  
 
 

 
а)     b)     c) 

 
Figure 5 – Temperature contours on 5.02 x plane for different Stuart numbersа) 

0N ; b) 09.0N ;c) 16.2N  at 20000Gr  
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Figure 6 – Temperature profile for different values of the Stuart number 

1) 0N ; 2) 09.0N ; 3) 16.2N  at 20000Gr . 
 
 

 
 

Figure 7 – Velocity profile for different Stuart values 
1) 0N ; 2) 09.0N ; 3) 16.2N  at 20000Gr . 
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Conclusion
 
MHD natural convection in a three dimensional 

area at different Stuart numbers  with temperature 
distribution on side wall has been considered by 
finite difference method with spectral method.  

To solve the equations of flow motion and 
temperature, the finite difference method is used in 
combination with a pentadiagonal matrix, and 
solved by using the Adams-Bashfort scheme. The 
Poisson equation is solved by spectral method using 
the fast Fourier transform.  

Thus, the following conclusions are drawn: 
isothermal surfaces change considerably and 
gradient of the boundary layer declines with 
increasing of Stuart number, so heat transfer rate, 
which depends on the temperature gradient, 
gradually decreases with increasing magnetic field, 
which indicates a weakening of the overall heat 
transfer effect. As for the physics of the influence of 
MHD on the structure of natural convection flows 
and heat transfer, this is due to the fact that in MHD 
flows the motion of vortex structures perpendicular 
to magnetic fields, i.e. horizontally oriented vortex 
cells, strongly suppressed due to the anisotropic 
effect of the magnetic field. The effect of the 
vertical magnetic field is that when the magnetic 
fields are stronger, the vortex structures will be 
more regular and will be shown parallel to each 
other. Consequently, thermal convection caused by 
the movement of the vortex cells will decrease due 
to the amplification of magnetic fields. 

As result of modelling, isothermal surfaces, 
velocity and temerature contoures, also profiles for 
different Sturart numbers are obtained. 
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