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Bayesian inference approach to inverse problem  
in a fractional option pricing model 

 
	

Abstract. As is well known to us, the Black-Scholes (B-S) model is an important and useful 
mathematical model for pricing a European options contract. However, because some strict 
assumptions in this model are not consistent with the real financial market, there are many limitations 
in practical applications. This paper investigates the inverse option problems (IOP) in a fractional 
option pricing model, which is derived from the finite moment log-stable (FMLS) model. We identify 
the model coefficients such as tail index � and the implied volatility � from the measured data by 
using three statistical inversionschemeswhich are well known asMarkov Chain Monte Carlo (MCMC) 
algorithm, slice sampling algorithm and Hamiltonian/hybrid Monte Carlo (HMC) algorithm. Our 
numerical tests indicate that these Bayesian inference approaches can recover the unknown 
coefficients well. 
Key words: FMLS model, statistical inversion, implied volatility, tail index, Bayesian Inference. 

	
	
Introduction 
 
As is well known to us, the Black-Scholes (B-

S) model is an important and useful mathematical 
model for pricing a European options contract (cf. 
[1]). However, because some strict assumptions in 
this model are not consistent with the real financial 
market, there are many limitations in practical 
applications. In particular, the implied volatility of 
options derived from the B-S model is a constant 
and cannot fit to the actual "volatility smile" 
pattern. Recently, the fractional B-S option pricing 
model has begun to be widely concerned by 
assuming the price of the original asset is subject to 
the fractional Brownian motion, or even more 
general Lévy processes. Among these generalized 
B–S model, the finite moment log-stable (FMLS) 
model can effectively capture the leptokurtic 

feature observed in many financial markets (cf.[3, 
4, 6 and 13]). 

The stochastic differential equation 
corresponding to the FMLS model is as follows: 
	

���
�� � ��� � �����,��, (1)

 
where � is native asset price, �  is expected return 
time, � and � are expected rate of return and asset 
volatility, respectively. ���,��  here denotes the 
maximally skewed Lévy stable process with a tail 
index � � ��,2�. 

By assume �� � ln��  and according to the 
argument in [4], SDE(1)can be derived into the 
following fractional parabolic partial differential 
equations with the spatial-fractional derivatives: 
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where � is option price, � is risk free rate, ���� is 
payoff function with a given strike price �. Here 

��������is the Weyl fractional operator defined as 
follows: 
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Similar withthe inverse option problem basing 
on the B-S model pioneered by Dupire [7], we 
come to our inverse option problem basing on the 
FMSL model as follows: 

Inverse Problem: Recover the tail index � and 
the implied volatility � from the measured option 
price ���� at a given �  such that � � �  is a fixed 
constant. 

However, because of the nonlinear dependency 
of �  on the coefficients �  and � , the uniqueness 
and stability issues of this inverse problem are 
quite difficult. Thus, we only desire to have a fast 
and stable numerical inversion algorithm for 
solving this inverse problem. Usually, for this 
purpose, a regularized iterative algorithm such as 
the Levenberg-Marquardt (L-M) algorithm will be 

the first choice ([10]). Unfortunately, without a 
good enough initial guess, iterations in L-M 
algorithm will not converge. On the other hand, a 
statistical inversion algorithm such as Metropolis-
Hastings Markov Chain Monte Carlo (MH-
MCMC) algorithm is now widely used with great 
success for solving a variety of inverse problems 
([11]). Here in this paper we will discuss how to 
apply the MH-MCMC algorithm to recover the 
unknown � and �. 

Moreover, both L-M algorithm and MH-
MCMC algorithm require for a fast forward solver, 
which can quickly get the accuracy numerical 
solution to our PDE model(2). Here we use the 
closed-form analytical solution given by Chen et 
al. [5] as follows: 

���, �� � ����� � ��,�
��

��
������� � �� � ���������

��

��
��,��������. ���

where 

�� � � � ln� � �1 � ���
���

,

� � ��
��� � ��
2 sec

��
2 ,

� � �2� ���sec
��
2 �

��
,

 

 
and 

 

��,���� � 1
��

��1 � ����
��

�

���
sin���2 �����

���. 
 
This solution will reduce to B-S formula by 

setting � � 2. 
The rest of this paper is organized as follows. 

In Section 2, three statistical inversion schemes for 
our inverse option problem are described and 
Section 3 is devoted to the numerical studies of our 
inversion schemes. 

 
Statistical Inversion Schemes  

	
In practices, the option price �  is generally 

obtained on the different asset price	���, �� , �����, 
and we denote: 

� �� ���, �� , ����� � ������, �� , ��������. 
Now our inverse problem comes to the 

following nonlinear inverse problem: 

	
� � ����,	

	
with respect to unknown coefficients we intend to 
recover: 

� �� ��, ���. 
 
Here we denote the mapping �: �� � ��. 
We can assume the noise �  contained in 

observation 
	

�� � � � �, 
 

to be Gaussian type white noise, i.e. components of 
the random noise �  are independent identically 
distributed (i.i.d.) such that � � ���, �����, where 
�� is known noise level and � is an identity matrix. 
Thus, the posterior distribution is usually 
formulated as follows according to the knowledge 
of Bayesian inference (cf. [11]): 
	

������ � exp�� 1
2��� � �

� � ���� ���� ����. 
 
The prior distribution here is simply assumed to 

be uniform, i.e. 
	

���� �� �1, � � �,
�, � � �.  



30 Bayesian Inference Approach to Inverse Problem in a Fractional Option Pricing Model

Int. j. math. phys. (Online)International Journal of Mathematics and Physics 10, №2, 28 (2019)

with a large enough admissible set �  of � . The 
above posterior distribution can be written into 
following form: 
	

������ � exp�� 1
���� � �

� � ���� ����. 
 
One can get the maximum a posterior (MAP) 

estimator ���� of � such that: 
	

���� � argma�
�

������. 
 
However, MAP estimate is point estimate, 

different measured data � will come to different �. 
To avoid this, one can compute the posterior 
conditional mean (CM) estimator from various 
point estimators: 

��� �� � �
��

��������. 
 
Furthermore, it is hard to know the explicit 

form of ������  in practice. Some sampling 
algorithm can be applied to obtain a set of samples 
�� (� � 1�� �� ) drawn independently from the 
distribution ������  (cf. [2, 11]), and thus ��� 
comes to a finite sum approximately 
	

��� � 1
����

�

���
. 

 
This is exactly the desired solution of our 

related inverse problem in the sense of Bayesian 
inference. 

MH-MCMC Algorithm: in this paper, we first 
apply the most famous and popular sampling 
algorithm: Metropolis-Hastings algorithm ([8, 12]) 
shown as follows: 

1. Generate ��  from �������� � ����� ��  for 
given ��. 

2. Calculate the choice 
 

����� ��� � min �1� ���������������. 
 
3. Update ��  as ���� � ��  with probability 

����� ���, otherwise set ���� � ��. 
4. Here the proposal distribution ������  is 

given as 
	

������ � exp �� 1
�� � � � � ����. 

 
with given step sizes ��  and ��  such that � �
diag����� ����. For more details about MH-MCMC 
algorithm, we can refer to [2, 11]. 

However, the performance of MH-MCMC 
algorithm highly dependents on the specific choice 
of proposal distribution ������. Without a carefully 
tuning of the step sizes ��  and �� , this algorithm 
will not lead to efficient samples. Therefore, we 
desire to have some sampling algorithm which will 
determine the step sizes “automatically”. The 
following two well-known sampling algorithms 
introduced in [2] can be applied. 

Slice Sampling Algorithm: the basic idea of 
this algorithm is to generate samples from the joint 
��� �� space with an additional variable � � ���� 
where ���� is just the sampling distribution where 
we set it to the posterior distribution ������. The 
procedure for finding the next sampling point �� 
from the current sampling point �  is shown by 
following algorithm (see also Figure 1): 

1. Generate a real value �  from the uniform 
distribution ���� ����� , and define the slice 
� � �� � � ����. 

2. Find a hyper rectangle ��� ���� ��� � ��
���� ��� around �, which contains the slice �  as 
much as possible. 

3. Generate the new sample �� uniformly in this 
hyperrectangle �. 

Due to the existence of computational error, it 
is difficult to locate the hyper rectangle �	exactly. 
A detailed numerical procedure about it can be 
found in [2]. Unfortunately, this numerical 
procedure always slows down the sampling.		
	

	
Figure	1 – Slice	sampling	algorithm.
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Hamiltonian Monte Carlo Algorithm: this 
sampling algorithm is also known as Hybrid Monte 
Carlo (HMC) algorithm. In this algorithm, the 
transition of sampling points is not through the 
proposed distribution ������ , but by solving the 
following Hamiltoniansystem: 
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where �  is a statevariable, ����  is the potential 
energy of the dynamical system when in state �, � 
is the momentumvariable, and ���� is the kinetic 
energy. When one state ��, �� changes to another 
state ���, ��� , the value of the following 
Hamiltonianisalways constant: 
	

���, �� � ���� � ���� 
� ����� � ����� � ����, ���. 

 
Based on this, we have the following HMC 

algorithm: 
1. Calculate the potential energy ���� �

������ of the current state � � �. 
2. Generate the momentum �  from a given 

simply normal distribution ������. 

3. Update the sample �� � �� by solving the 
above Hamiltonian system. 

However, in practice, we can only solve the 
Hamiltonian equations numerically by applying the 
leapfrog scheme. Therefore, to ensure the samples 
are all in the same stable Markovchain, we use the 
“accept-reject" criterion to accept the candidate 
sample ��or not: 
	

� � min��, ������,�������,���. 
 
This indeed is similar to the one used in above 

MH-MCMC algorithm. 
Numerical Test 
In this section, we will test the performance of 

three algorithms for solving our inverse option 
price numerically. 

Simulated Data: we firstly generate the noise 
free simulated data and the noisy simulated data 
which contains 20% relative Gaussian noise by 
using the closed-form analytical solution (3) (see). 
Here, the parameters in (3) are the same as the ones 
in Chen et al.: � � ��, � � �.�, � � � � � (year) 
and � � ��, ��� � ��.��,�.������. 

Therefore, we test the sampling algorithms 
shown above under these simulated data one by 
one.The initial value of ��  is always set to 
���, ���� � ��,�.���. 

	

Figure 2 - Simulated data
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Figure 3 – Samples by applying MH-MCMC algorithm from noise free data: (up) α; (down) σ 
 

 
Figure 4 – Samples by applying MH-MCMC algorithm from noisy data (5%): (up) �; (down)σ 

 
 

 

Figure 5 – Samples by applying slice sampling algorithm from noise free data: (up) �; (down) �. 

 
MH-MCMC Algorithm: the other hyper 

parameters used in MH-MCMC algorithm are set 
to be � � diag�0.25�, 0.025���  and �� � �0�� . 
The total sampling time is 1000. Samples from 

noise free data are shown in, while samples from 
noisy data are shown in. We always set up some 
"burn-in" time, which is thought as the start point 
of stable Markov Chain. The mean value of 
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samples among this "burn-in" time (=101) and the 
ending point (=1000) is computed and set to be our 
recovered result shown in Table 1. It is clear the 
MH-MCMC algorithm works well and does not 
trap in the any local minimums. Theoretically, a 
large number of samplings will final derive to a 
stable Markov chain, but in practice the computing 
cost will be very expansive, and thus we always 
need to manually choose the hyper parameters �� 
and 	�  in MH-MCMC algorithm such that the 
Markov chain “converge” fast and stable. This is a 
big disadvantage of this MH-MCMC algorithm, 
and it will be quite interesting for us to try the other 
two sampling algorithms. 

Slice Sampling Algorithm: the only hyper 
parameter needs to be set is�� � 10��. The total 
sampling time is also 1000. Samples from noise 
free data are shown in, while samples from noisy 
data are shown in. The mean value of samples 
among this "burn-in" time (=101) and the ending 

point (=1000) is computed and set to be our 
recovered result shown in Table 1. 

 
Table 1 – Recovered results by applying MH-MCMC 
algorithm. 

 � � 
Initial value 2 0.5 

Noise free data 1.7536 0.2453 
Noisy data (5%) 1.8215 0.2493 

True value 1.75 0.244 
 
 

Table 2 – Recovered results by applying slice sampling 
algorithm. 

 � � 
Initial value 2 0.5 

Noise free data 1.7509 0.2429
Noisy data (5%) 2.0617	 0.2529

True value 1.75 0.244 

 

Figure 6 – Samples by applying slice sampling algorithmfrom noisy data (5%): (up) �; (down)	� 
 

 

Figure 7 – Samples by applying HMC algorithm from noise free data: (up) �; (down) � 
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It is clear that the samples always transit with 
probability one without stopping. Therefore, these 
samples generated by slice sampling algorithm can 
exhibit the real random characteristics of the 
posterior distribution  we desire to recover 
in every statistical inverse problem.  

Hamiltonian Monte Carlo Algorithm: similar 
to slice sampling algorithm, the only hyper 
parameter needs to be set is . The total 
sampling time is again 1000. Samples from noise 
free data are shown in, while samples from noisy 
data are shown in. The mean value of samples 
among this "burn-in" time (=101) and the ending 
point (=1000) is computed and set to be our 
recovered result shown in Table 1.  

Similar to slice sampling algorithm, the 
samples draw by HMC algorithm usually transit  
 

stalely without stopping. These samples generated 
can also exhibit the real random characteristics of 
the posterior distribution  we desire to 
recover. However, the numerical computation of 
Hamiltonian system in each sampling is quite time 
consuming, and thus HMC algorithm is much 
slower than the other two in this paper. 

 

Table 3 – Recovered results by applying HMC 
algorithm 

   
Initial value 2 0.5 

Noise free data 1.7588 0.2446 
Noisy data (5%) 1.9255 0.2539 

True value 1.75 0.244 
 

 

 

Figure 8 – Samples by applying HMC algorithm from noisy data (5%): (up) ; (down)  

 
 
Conclusion: all of these three sampling 

algorithms can solve our invers option problem 
well. The recovery of the implied volatility  is 
much better than the recovery of the tail index 

because of the high nonlinearity of the problem 
corresponding to . 

Also, here isa short summary of the main 
advantage and disadvantage of inversion 
algorithms involved in this paper: 

L-M algorithm 
Disadvantage: good initial value  is required, 

otherwise it is easy to fall into local minimum. 
Advantage: if the initial value is properly 

selected, the convergence speed is fast and the 
result is accuracy. 

 
 

MH-MCMC algorithm 
Disadvantage: need to carefully choose a 

proposal distribution, otherwise the rejected rate 
will be quite high and need to have a large number 
of samples to draw/recover the posterior 
distribution . 

Advantage: if the proposal distribution is 
properly chosen, the recovered posterior 
distribution is good. 

Slice sampling algorithm 
Disadvantage: finding a proper slice in each 

sampling is time consuming.  
Advantage: no need of the proposal distribution 

and the recovered posterior distribution is 
good. 
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HMC algorithm 
Disadvantage: numerical computation of 

Hamiltonian system in each sampling is quite time 
consuming. 

Advantage: no need of the proposal distribution 
and the recovered posterior distribution ������	is 
good. 
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