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An inverse problem of dcis model
based on nonlocal and terminal data

Abstract. Astheearliest period of breast cancer, the ductal carcinoma in situ (DCIS) model has wide
applications in the diagnosis of breast cancer and has been attracted much attention in recent years. In
this paper, a novel PSO method is developed for solving an inverse problem of the DCIS model from
nonlocal and terminal data. The numerical simulations show that the proposed method is efficient,
accurate, robust against noise and fast. Moreover, it is better than the optimization method in the

literature [8].
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1. Introduction

Ductal carcinoma in situ (DCIS) means a
specific diagnosis of cancer that is isolated within
the breast duct, and has not spread to other parts of
the breast. Tumor growth is an important research
focus of mathematical modeling in recent 40 years
[1-7].

In this paper we study a model about tumor
growth firstly proposed by Byrne and Chaplain in
1995 [1-3]. Ward and King developed a velocity
field to handle local volume changes caused by cell
movement under some reasonable assumptions
[4-5]. Mathematical modeling for the dynamical
growth of DCIS is a free boundary problem and
was developed in [6-9]. To find possible steps to
simulate the growth of the DCIS model with
clinical data, Xu and his collaborators performed
some mathematical analysis on the modified model
and performed numerical calculations on some
typical cases [6]. Li and Zhou studied an inverse
problem of solving the control parameter with
known moving boundaries [7]. According to one of
the four inverse problems proposed by Xu [6], then
Liu established the wuniqueness theorem for
determining the inverse problem with unknown
parameters, deduced an optimization problem, and
proposed an effective algorithm to solve the
problem [8].

Due to the difficulties caused by the time
varying boundary, numerical simulations are very
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limited. Especially, the effective numerical
approaches for the inverse problems are
indispensably and urgently needed.

In this paper, we shall present a novel efficient
PSO method for solving the inverse free boundary
problem. In section 2, a brief introduction of direct
problem of DCIS would be exhibited. The novel
PSO method would be proposed in section 3. And
in section 4, a numerical example are demonstrated
to show the effectiveness and robustness of our
novel method.

2. A Brief Introduction of Direct Problem for
DCIS

In this section, the forward problem of DCIS
model would be stated. The DCIS problem of the
one-dimensional case in Figure 1 is modeled by the
following parabolic equation

c@ = 8_2\/ —Ax)v(x,t)+ F(x,t)®
or o’ ’ ’

(2.1
O<x<wy(t),t>0,

0<c=T

diffusion

/T <1

Where growth

(normally,

7—:Lliffusion ~ 1 minute T,

growth

~lday) is the ratio of

the nutrient diffusion time scale to the tumor
growth time scale, v denotes the tumor growth
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pattern which is using dimensionless nutrient
concentration, A(x)v(x,f) means the nutrient

consumption rate, F'(x,#) represents the transfer
of nutrient from/to the neighborhood and /(¢) are
the growing boundary of the tumor. Moreover,
v(x,t) should satisfy the following initial and free
boundary conditions,

v(x,0) = f(x), 0 <x <y/(0),
v(0,6) =g (1), 0<t<T,

2.3)

Wy (t),1) =g, (), 0<t<T,

w(r)

»

0 X

Figure 1 — The demonstration of the free

boundary problem DCIS in the one dimension

3. Inverse Problem of DCIS

In this section, the inverse problem of DCIS
model would be investigated. In a routine physical
examination, a possible breast tumor would be
noticed, and it may be benign. The tumor would be
growing bigger and bigger in the following days.

Therefore, the patient have to do an incisional
biopsy to determine the DCIS pattern along with
the changing rate at a fixed period (e.g. a couple of
weeks). In this case, the initial data is not available,
and only the information of set {v(x,?),(t),W}

is provided by the incisional biopsy at the examine

time t=7, see Figure 2 for the demonstration.
The inverse problem of our interest is to

determine the rate A(x) for 0<x<y(T) from
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Where the final time 7 <oo is a constant.
Furthermore, the mass conservation consideration
indicates the following equality

dy () _

= 2.3
" (2.3)

GJ.OW) (v(x, 1) —s, )dx,
where both o and s, are positive constants. The
in (2.3)

proliferation rate inside the tumor, and the cell birth
rate is denoted as ov while the death rate is

provided by os,. The direct problem of this

term o(v—s,) represents the cell

model is to determine {v(x,?),w(t)} for given
{A(x), F(x,t).g,(1),8,(t), ¥ (0),0,s,} . The direct

problem can be solved by the finite difference
method, we refer to the literature [8].

Pathological
section w(r)

»
P

0 X

Figure 2 — The demonstration of pathological

sections at time t =T

the examined data set {v(x,?),w(t),W} and the
{0,0,5,F (5, 7)., ()., ()},
where the illustration of W(&) is provided in
(3.1 With  the A(x)  for
0<x<w(T) and the given data set, the process to
w(1)., and w(x,r)| , becomes

given data set

recovered

approximate

the direct problem. Finally, we are able to diagnose
the breast tumor is benign or not from the

information of estimate A(x),w ()|, ,v(x,t)‘ T}.
> t>

Consequently, the inverse problem comes down to
determine A(x) from the examined and given data.
Moreover, the uniqueness of inverse problem is
equivalent to the uniqueness of A(x).

We consider the DCIS model as follows
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ca—vza—‘;—;t(x)v(x,t)JrF(x,z), 0<x<w(),0<t<T,

ot Ox
v(0,6) = g,(t), 0<i<T,
v(;//(t),t) =g,(t), 0<t<T,

w0 3.1
w'(t) =0 j (v(x.t)—s,)dxs  0<1<T,
0
Vr
teD,

[ v, (e Tyo(x Edx =W (&),

where D is a parameter set, and {o(-, §)|§ e D}

is assumed to be complete in L*([0,1]). In a

clinical aspect, the function represents the obtained
data for the growth rate of tumor cells.

ou 1

Ou , —Y'(O/2+8y' () ou

By the variables substitutions™, the above

problem (3.1) is equivalent to determine /(<)
such that

oy os’ w (1)
u(0,0) =g, (1),  0<t<T,
u(l,t) =g, (1) 0<t<T,

w(t) =y e—UJ.ITJ.;(u({,t)—sO)dfdr
=y, ,

W(E) =] (. De(¢.)dc,

where p(s) and H(g,t) are respectively
presented as follows

()= ¢y o)), (3:3)

H(&0=F(¢(w®).0), (3.4)

We now consider the set

Q={p(c.&)|sc €[0,1],6 € D} which forms a

base of L*([0,1]). Without loss of generality, the
set is selected as

Q={sin(5&)|¢ €[0,1],E =0,1,---}.

4. PSO method for the Inverse Problem of
DCIS

In this section, we convert the inverse problem
of estimating (¢) into a minimization problem
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ag—ﬂ(C)M(CJHH(C,I)’

(3.2)

(¢ T) =u,($) 0<E <l w(T) =y,

teD.

and obtain the solution for the optimization
problem by a stochastic search method which is
known as particle swarm optimization algorithm.

The inverse problem of estimating £(g) is
expressed as follows similar to the literature [8],

min J(u) 4.1)
where o
T [ MOnE TeC. -] 4

There are many approaches are existing to
solve the above optimization model, we refer to
[8-13]. In the reference [8], the optimization
problem is transformed into a solution of linear
algebraic equations by direct discrete method, and
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then the linear algebraic equations are solved by
regularization method. In this paper, we would like
to apply the PSO method which is knowns as an
effective method to solve the optimization
problems.

The PSO method [14-18] is an efficient
technique for solving many nonlinear, nondifferen-
tiable and multi-modal complex optimization
problems. It has become very popular because its
implementation is very simple and can be quickly
aggregated into a good solution. It does not require
any gradient information of the optimization
function, and only uses the original mathematical
operator. The PSO method is a stochastic algorithm,
which does not depend on the initial value select,
and can converge to the global optimal solution.

This group of particles is called a swarm in
PSO. A swarm consists of M particles moving
around in a D-dimensional search space. The
position of the i-th particle can be represented

Zi:(zil’ziz"“’zin). The velocity of the i-th
particle can be written as
Az, :(AZiI’AZiz""’AZiD). The optimal position
so far found by particle i-th is denoted as

P _ P pr p best
z; = (Zi1 , Zl.2 geees Ziz) ) called D;

bes
value of the all individual P: tvalues is denoted as

The best

g _ (.8 .8 g
the global best position Zi —(Z,-, aZ,-za---,Z,-D) and
best : . .
called & .In each iteration, the particle updates

its speed and position according to the following
formula:

AZinew — WXAZiOld +clrl (pibest _Ziold )+
best 1d (4-2)
eS| 0
TG0 (g; —Z )
2 =z + A (4.2)

where 7, and 7, are random numbers between

[0,1], ¢, and ¢, are acceleration constants which
control how far particles move in a single
generation. Velocities Az’ and Az’ denote the
velocities of the new and old particle respectively.
old new

z; 1s the current particle position, and z; " is

updated particle position. The Inertial factor w
controls the impact of the previous velocity of a
particle on its current one.
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The algorithm only requires the fitness
function of each particle, without continuity,
differentiability and other assumptions, which is
very useful for discontinuous functions.

5. Numerical Simulations

In this section, we would like to state a
numerical example to exhibit the feasibility and
effectiveness of our methods. And we would
compare the reconstructions of PSO method and
Liu’s method of the literature [8] in the following
numerical experiments.

We investigate the above DSCI model

QD-(23) with Ax)=x, f(x) =(1+x)e*,
F(x,t) =[(1+x)(2-1)" =2t +4 e,

1
t) =1, ty =1+ ——1e'?,
g, (1) g,(1) ( 4 -2 j
1
) =——,
w0 4-2%
then the solution can be represented as

And the parameters ¢=1,

wWx,t) =(1+x)e™™.
—1/2

_ 1 3
s,=e"* —e™"?, a=1/(—zevz-i—ze ). The mesh sizes

of X and ! variables are respectively selected as
h=0.0land 7=0.001, and the time interval is
chosen to be [0,1].

The parameters in PSO are set as
M =300,c, =c, =1.4962,w=10.7298.

In order to compare the results involving
random measurement noise, we add a uniform
distribution uncorrelated errors. The simulated

inexact measurement data can be expressed as

u(¢,T)=u(g,D1+0K()]: ¢ €[0,1] (5.1)

where 0=1% or 0=3% means the noise level
and K({) is a random number which varies
from -1 to 1 and is uniformly distributed.

Given that the accurate measured data, the
inversion results of the two methods are close to
each other and the relative errors are not much
different in Figure 3. If the measurements contain
perturbations, PSO method gives better results than

the method in [8] from Figures 4 and 5.
Int. j. math. phys. (Online)
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The inversion results of exact measurement data  results of PSO are have smaller relative errors than the
are better than the results of data containing noisy from  results of Liu’s method. The same results can be
Figure 3-5. When noisy measurements 6=1% , the  obtained with noisy measurement §=3%.
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Figure 3 — Comparisons results and absolute errors between exact solutions
and numerical solutions with exact measurements
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Figure 4 — Comparisons results and absolute errors between exact solutions

and numerical solutions with noisy measurements 5=1%
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Comparisons between exact solutions and numerical solutions
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Figure 5 — Comparisons results and absolute errors between exact solutions

and numerical solutions with noisy measurements 0=3%

6. Conclusion remarks

We adopt PSO algorithm to solve the inverse
problem of DCIS model, which is converted into
an optimization problem. The advantage of the
characteristic of this random search method is that
it does not need gradient calculation and the choice
of initial guess. Therefore, even if there is a small
noise, the PSO algorithm is still stable when
dealing with this inverse problem. It can be
observed from the numerical results that PSO
method is effective and robust to solve the inverse
problem of DCIS model.
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