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An inverse problem of dcis model  
based on nonlocal and terminal data 

 
 

Abstract. Astheearliest period of breast cancer, the ductal carcinoma in situ (DCIS) model has wide 
applications in the diagnosis of breast cancer and has been attracted much attention in recent years. In 
this paper, a novel PSO method is developed for solving an inverse problem of the DCIS model from 
nonlocal and terminal data. The numerical simulations show that the proposed method is efficient, 
accurate, robust against noise and fast. Moreover, it is better than the optimization method in the 
literature [8]. 
Key words: free boundary problem; PSO method; ductal carcinoma in situ; numerical simulation. 
 

 
1. Introduction 
 
Ductal carcinoma in situ (DCIS) means a 

specific diagnosis of cancer that is isolated within 
the breast duct, and has not spread to other parts of 
the breast. Tumor growth is an important research 
focus of mathematical modeling in recent 40 years 
[1-7].  

In this paper we study a model about tumor 
growth firstly proposed by Byrne and Chaplain in 
1995 [1-3]. Ward and King developed a velocity 
field to handle local volume changes caused by cell 
movement under some reasonable assumptions 
[4-5]. Mathematical modeling for the dynamical 
growth of DCIS is a free boundary problem and 
was developed in [6-9]. To find possible steps to 
simulate the growth of the DCIS model with 
clinical data, Xu and his collaborators performed 
some mathematical analysis on the modified model 
and performed numerical calculations on some 
typical cases [6]. Li and Zhou  studied an inverse 
problem of solving the control parameter with 
known moving boundaries [7]. According to one of 
the four inverse problems proposed by Xu [6], then 
Liu established the uniqueness theorem for 
determining the inverse problem with unknown 
parameters, deduced an optimization problem, and 
proposed an effective algorithm to solve the 
problem [8]. 

Due to the difficulties caused by the time 
varying boundary, numerical simulations are very 

limited. Especially, the effective numerical 
approaches for the inverse problems are 
indispensably and urgently needed. 

In this paper, we shall present a novel efficient 
PSO method for solving the inverse free boundary 
problem. In section 2, a brief introduction of direct 
problem of DCIS would be exhibited. The novel 
PSO method would be proposed in section 3. And 
in section 4, a numerical example are demonstrated 
to show the effectiveness and robustness of our 
novel method.  

 
2. A Brief Introduction of Direct Problem for 

DCIS 
 
In this section, the forward problem of DCIS 

model would be stated. The DCIS problem of the 
one-dimensional case in Figure 1 is modeled by the 
following parabolic equation 
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where 0 c= / 1diffusion growthT T  (normally, 

diffusion 1T  minute gr 1owthT  day) is the ratio of 
the nutrient diffusion time scale to the tumor 
growth time scale, v denotes the tumor growth 
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pattern which is using dimensionless nutrient 
concentration, ( ) ( , )x v x t means the nutrient 
consumption rate, ( , )F x t  represents the transfer 
of nutrient from/to the neighborhood and ( )t are 
the growing boundary of the tumor. Moreover, 

( , )v x t should satisfy the following initial and free 
boundary conditions, 
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(2.3) 

 

Where the final time T    is a constant. 
Furthermore, the mass conservation consideration 
indicates the following equality 

 
( )

0 0
( ) ( , ) ,( )td t v x t s dx
dt

         (2.3) 

 
where both   and 0s  are positive constants. The 
term 0( )v s   in (2.3)  represents the cell 
proliferation rate inside the tumor, and the cell birth 
rate is denoted as v  while the death rate is 
provided by 0s . The direct problem of this 
model is to determine { ( , ), (t)}v x t   for given 

1 2 0{ ( ), ( ,t), (t),g (t), (0), , }x F x g s   . The direct 
problem can be solved by the finite difference 
method, we refer to the literature [8]. 

 

  
Figure 1 – The demonstration of the free     

boundary problem DCIS in the one dimension 
Figure 2 – The demonstration of pathological  

sections at time t = T 
 

 
3. Inverse Problem of DCIS 
 
In this section, the inverse problem of DCIS 

model would be investigated. In a routine physical 
examination, a possible breast tumor would be 
noticed, and it may be benign. The tumor would be 
growing bigger and bigger in the following days. 

Therefore, the patient have to do an incisional 
biopsy to determine the DCIS pattern along with 
the changing rate at a fixed period (e.g. a couple of 
weeks). In this case, the initial data is not available, 
and only the information of set { ( , ), (t),W}v x t   
is provided by the incisional biopsy at the examine 
time t T , see Figure 2 for the demonstration. 

The inverse problem of our interest is to 
determine the rate ( )x  for 0 ( )x T   from 

the examined data set { ( , ), (t),W}v x t   and the 
given data set 0 1 2{c, , ( , ), ( ),g ( )},s F x T g T T  
where the illustration of W( )  is provided in 
(3.1) . With the recovered ( )x  for 
0 ( )x T   and the given data set, the process to 
approximate  ( )

t T
t


 and ( , )

t T
v x t


 becomes 

the direct problem. Finally, we are able to diagnose 
the breast tumor is benign or not from the 
information of estimate { ( ), ( ) , ( , ) }

t T t T
x t v x t 

 
. 

Consequently, the inverse problem comes down to 
determine λ(х) from the examined and given data. 
Moreover, the uniqueness of inverse problem is 
equivalent to the uniqueness of λ(х). 

We consider the DCIS model as follows 
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where D is a parameter set, and { ( , ) }D     

is assumed to be complete in 2 ([0,1])L . In a 
clinical aspect, the function represents the obtained 
data for the growth rate of tumor cells. 

By the variables substitutions[8], the above 
problem (3.1)  is equivalent to determine ( )   
such that
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where ( )   and ( , )H t  are respectively 
presented as follows 

( ) ( ) ,( ( ))t             (3.3) 
( ( ,, ) ) ,( ( ) )H t F t t          (3.4) 

 
We now consider the set 

={ ( , ) [0,1], }D        which forms a 

base of 2 ([0,1])L . Without loss of generality, the 
set is selected as 

={sin( ) [0,1], 0,1, }      . 
 
4. PSO method for the Inverse Problem of 

DCIS 
 
In this section, we convert the inverse problem 

of estimating ( )   into a minimization problem 

and obtain the solution for the optimization 
problem by a stochastic search method which is 
known as particle swarm optimization algorithm.  

The inverse problem of estimating ( )  is 
expressed as follows similar to the literature [8], 
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There are many approaches are existing to 

solve the above optimization model, we refer to 
[8-13]. In the reference [8], the optimization 
problem is transformed into a solution of linear 
algebraic equations by direct discrete method, and 
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then the linear algebraic equations are solved by 
regularization method. In this paper, we would like 
to apply the PSO method which is knowns as an 
effective method to solve the optimization 
problems. 

The PSO method [14-18] is an efficient 
technique for solving many nonlinear, nondifferen-
tiable and multi-modal complex optimization 
problems. It has become very popular because its 
implementation is very simple and can be quickly 
aggregated into a good solution. It does not require 
any gradient information of the optimization 
function, and only uses the original mathematical 
operator. The PSO method is a stochastic algorithm, 
which does not depend on the initial value select, 
and can converge to the global optimal solution.  

This group of particles is called a swarm in 
PSO. A swarm consists of M particles moving 
around in a D-dimensional search space. The 
position of the i-th particle can be represented 

 1 2
, , ,

Di i i iz z z z  . The velocity of the i-th 
particle can be written as 

 1 2
, , ,

Di i i iz z z z      . The optimal position 
so far found by particle i-th is denoted as 
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best In each iteration, the particle updates 

its speed and position according to the following 
formula: 
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new old new .i i iz zz             (4.2) 

 
where 1r and 2r  are random numbers between 
[0,1]，1c  and 2c  are acceleration constants which 
control how far particles move in a single 
generation. Velocities new

iz  and old
iz denote the 

velocities of the new and old particle respectively. 
old
iz is the current particle position, and new

iz is 
updated particle position. The Inertial factor w  
controls the impact of the previous velocity of a 
particle on its current one. 

The algorithm only requires the fitness 
function of each particle, without continuity, 
differentiability and other assumptions, which is 
very useful for discontinuous functions. 

 
5. Numerical Simulations 
 
In this section, we would like to state a 

numerical example to exhibit the feasibility and 
effectiveness of our methods. And we would 
compare the reconstructions of PSO method and 
Liu’s method of the literature [8] in the following 
numerical experiments. 

We investigate the above DSCI model 
(2.1) (2.3)  w i t h  ( ) ,x x  2( ) (1 )e ,xf x x   
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then the solution can be represented as 
(2 ) , ) (1 )e .( t xv x t x    And the parameters c=1,

1/2 1/2
0s =e e , 1/2 1/21 31 ( )e/

2 2
e   . The mesh sizes 

of x  and t  variables are respectively selected as 
0.01h  and 0.001  , and the time interval is 

chosen to be [0,1]. 
The parameters in PSO are set as 

1 2300, 1.4962, 0.7298.M c c w     
In order to compare the results involving 

random measurement noise, we add a uniform 
distribution uncorrelated errors. The simulated 
inexact measurement data can be expressed as     

                       

 (5.1) 

 
where =1% or =3%  means the noise level 
and ( )K   is a random number  which varies 
from -1 to 1 and is uniformly distributed.  

Given that the accurate measured data, the 
inversion results of the two methods are close to 
each other and the relative errors are not much 
different in Figure 3. If the measurements contain 
perturbations, PSO method gives better results than 
the method in [8] from Figures 4 and 5. 



25Meibao Ge et al.

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 10, №2, 21 (2019)

The in
are better t
Figure 3-

 
 

nversion resu
than the resul
5. When no

       (a)

Fig

 (a) Comp

Fig

ults of exact 
lts of data con
oisy measure

 Comparison 

gure 3 – Com
and

mparison result

gure 4 – Com
and num

measuremen
ntaining noisy
ements =1%

results      

mparisons resul
d numerical so

ts          

mparisons resul
merical solutio

nt data 
y from 

, the 

resu
resu
obt

 

    

           
 

lts and absolu
olutions with e

           
 

lts and absolu
ons with noisy

ults of PSO a
ults of Liu’s
tained with no

          

ute errors betw
exact measure

    (b) Abso

ute errors betw
y measuremen

are have smal
s method. T
oisy measurem

 (b) Absolut

ween exact solu
ements 

olute errors 

ween exact solu
nts =1%  

ller relative er
The same re
ment =3%.

te errors 

utions  

utions  

rrors than the
sults can be

 

 

e 
e 



26 An inverse problem of DCIS model based on nonlocal and terminal data 

Int. j. math. phys. (Online)International Journal of Mathematics and Physics 10, №2, 21 (2019)

 
 

6. Con
 
We ad

problem o
an optim
characteri
it does no
of initial 
noise, th
dealing w
observed 
method is
problem o

 
Ackn
 
The au

anonymou
the paper.

 
Disclo
 
No po

the author
 
Fund
 
The 

supported
Projects 
Universit
partially 

 (a) Comp

Fig

nclusion rem

dopt PSO al
of DCIS mo

mization prob
istic of this r
ot need gradi
guess. There
e PSO algo
with this in

from the 
s effective an
of DCIS mod

owledgment

uthors kindly
us referees in
 

osure statem

otential confl
rs.  

ing   

work of M
d by the Co
of School o
ty of Fina

supported 

mparison result

gure 5 – Com
and num

marks 

lgorithm to 
odel, which 
blem. The a
random sear
ent calculati
efore, even i
orithm is s
nverse prob
numerical r
nd robust to 
del. 

t  

y acknowled
n improving 

ment 

lict of interes

Meibao Ge
onference F
of mathema
ance and E

by Zhej

ts          

mparisons resul
merical solutio

solve the in
is converted

advantage o
rch method i
on and the c
if there is a 
still stable 
blem. It ca
results that 
solve the in

dge the help o
the readabil

st was report

e was par
Funded Rese
tics of Shan
Economics, 
iang Provi

           
 

lts and absolu
ons with noisy

nverse 
d into 
of the 
s that 

choice 
small 
when 

an be 
PSO 

nverse 

of the 
lity of 

ted by 

rtially 
earch 
nghai 

and 
incial 

De
20
the
and
Sh
Ris
wo
NN
114

non
inh

tum
Ma

ma
Ma

mo
Ap

mo
Mo
Me

rais
car
49(

    (b) Abso

ute errors betw
y measurement

epartment o
19. The wo
e NNSF of 
d the Scienc
anghai Mu
sing-Star Pr

ork of Ding
NSF of Chi
471287]. 

 
References
 
1. H. Byr

nnecrotic tum
hibitors. Math

2. H. Byrne
mors in the 
ath Biosci.13

3. A. Fried
athematical m
ath. Biol. 38(

4. J.P. W
odelling of av
ppl. Med. Bio

5. J.P. W
odelling of
odelling grow
ed. Biol. 16 (

6. Y. Xu,G
sed from a
rcinoma in
(2009):814-8

olute errors 

ween exact solu
ts =3%  

of Education
ork of Keji 
China unde
ce and Tech
unicipality 
rogram” No
ghua Xu w
na [grant n

s  

rne, M. C
mors in the p
h Biosci.130
e, M. Chapl
presence an

35(1996):187
dman, F. R
model for th
(1999):262-2

Ward, J.R. 
vasculartumo
ol. 14(1997) 

Ward, J.R. 
f avascula
wth saturatio
(1999):171-2

Gilbert R. S
a mathemat

n situ, M
828. 

utions  

n Research 
Liu was su

er grant No.
hnology Com

under the 
o. 19QA140
was suppor
numbers 118

Chaplain. 
presence and

0(1995):151-
lain. Growth

nd absence o
7-216. 
Reitich, Ana
he growth o
284. 

King, M
our growth, 
:39-69. 

King, M
artumour g
on, IMA J. M
211. 
Some invers
tical model

Math. Com

 

Project in
upported by
. 11601308,
mmission of

“Shanghai
03400. The
ted by the
871435 and

Growth of
d absence of
181. 

h of necrotic
of inhibitors.

alysis of a
of tumours,J.

Mathematical
IMA J.Math

Mathematical
growth II:
Math. Appl.

se problems
l of ductal

mp. Model.

n 
y 
, 
f 
i 
e 
e 
d 

f 
f 

c 
. 

a 
. 

l 
h. 

l 
: 
. 

s 
l 
. 



27Meibao Ge et al.

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 10, №2, 21 (2019)

7. H. Li, J. Zhou. Direct and inverse problem 
for the parabolic equation with initial value and 
time-dependent boundaries, Applicable Analysis, 
95(6)(2016):1307-1326. 

8. K. Liu, Y. Xu, D. Xu, Numerical algorithms 
for a free boundary problem model of DCIS and a 
related inverse problem, Applicable Analysis, 
DOI:10.1080/00036811.2018.1524139. 

9. K. Liu, Zou J. A multilevel sampling 
algorithm for locating inhomogeneous media. Inv 
Prob. 2013;29:095003. 

10. K. Liu, Xu Y, Zou J. A multilevel 
sampling method for detecting sources in a 
stratified ocean waveguide. J Comput Appl Math. 
309(2017):95–110. 

11. K. Liu. A simple method for detecting 
scatterers in a stratified ocean waveguide. Comput 
Math Appl. 76(2018):1791-1802. 

12. D. Xu. Inverse problems of textile 
material design based on clothing heat-moisture 
comfort. Appl Anal. 93(2014):2426-2439. 

13. D. Xu. Mathematical modeling of 
heat-moisture transfer and corresponding inverse 
problems in textile material design. Beijing: 
Science Press, 2014. 

14. Kennedy J, Eberhart R. Particle swarm 
optimization. In: 1995 Proceedings of the IEEE           
International Conference on Neural Networks. 4 
(1995):1942–1948. 

15. Clerc M. Particle swarm optimization. 67. 
London: Recherche, 2006. 

16. Lazinica A. Particle swarm optimization. 
Kirchengasse: InTech, 2009. 

17. Parsopoulos K, Vrahatis M. Particle 
swarm optimization and intelligence: advances and 
applications. Chicago: Information Science 
Reference, 2010. 

18. Y. Xu, D. Xu, L. Zhang,X. Zhou.A new 
inverse problem for the determination of textile 
fabrics thickness, Inverse Problems in Science and 
Engineering, DOI: 10.1080/17415977.2014.933827

 


