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NUMERICAL SOLUTION OF A CONTROL PROBLEM 

FOR ORDINARY DIFFERENTIAL EQUATIONS  
WITH MULTIPOINT INTEGRAL CONDITION 

 
 

Abstract.A linear boundary value problem with a parameter for ordinary differential equations with 
multipoint integral conditionis investigated.The method of parameterization is used for solving the 
considered problem. The linear boundary value problem with a parameter for ordinary differential 
equations with multipoint integral condition by introducing additional parameters at the partition points 
is reduced to equivalent boundary value problem with parameters. The equivalent boundary value 
problem with parameters consists of the Cauchy problem for the system of ordinary differential 
equations with parameters, multipoint integral condition and continuity conditions. The solution of the 
Cauchy problem for the system of ordinary differential equations with parameters is constructed using 
the fundamental matrix of differential equation. The system of linear algebraic equations with respect to 
the parameters are composed by substituting the values of the corresponding points in the built 
solutions to the multipoint integral condition and the continuity condition. Numerical method for 
finding solution of the problem is suggested, which based on the solving the constructed system and 
Runge-Kutta method of the 4-th order for solving Cauchy problem on the subintervals. 
Key words: control problem with multipoint integral condition, numerical solution, algorithm. 

 
 

Introduction 
 
Control problems, which are also called 

boundary value problems with parameters and the 
problem of identification parameter for a system 
of ordinary differential and integro-differential 
equations with parameters, have been intensively 
investigated in recent years. Questions of 
existence, uniqueness and stability of solving 
problems with parameters are very important for 
development of numerical methods of 
identification of parameters of the mathematical 
models described by ordinary differential equations 
with multipoint integral condition [1-8].To solve 
these classes of control problems, there were used 
the optimization methods, topological methods, the 
maximum principle, etc. In spite of this, the 
questions of finding the effective signs of unique 
solvability and constructing the numerical 
algorithms for finding the optimal solutions of 
control problems for the   systems of ordinary 
differential equations with parameters still remain 

open. One of the constructive methods for 
investigating and solving the boundary value 
problems with parameters for the system of 
ordinary differential equations is the 
parameterization method [9]. The parameterization 
method was developed for the investigating and 
solving the boundary value problems for the 
system of ordinary differential equations. On the 
basis of this method, coefficient criteria for the 
unique solvability of linear boundary value 
problems for the system of ordinary differential 
equations were obtained. Algorithms for finding 
the approximate solutions were also proposed and 
their convergence to the exact solution of the 
problem studied was established. Later, the 
parameterization method was developed for the 
two-point boundary value problems for the 
Fredholmintegro-differential equations [10-14]. 
Necessary and sufficient conditions for the 
solvability and unique solvability are established, 
the algorithms for finding the approximate 
solutions of the problems considered are 
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the linear Fredholm integro-differential equation on 
the basis of new algorithms of parameterization 
method are constructed. This approach are applied 
to two-point boundary value problems for system of 
ordinary and ordinary loaded differential equations 
with parameter [16-17].   

In the present paper, linear problem with a 
parameter for an ordinary differential equation with 
multipoint integral condition is investigated. Based 
on the parameterization method and numerical 
methods, the numerical method for solving the 
problem considered  is developed, and the 
algorithms for their implementation are proposed. 
By introducing additional parameters as the values 
of the desired solution at some points of the interval 
�0, 𝑇𝑇�, where the problem is considered, the obtained 
problem is reduced to the equivalent problem 
consisting of a special Cauchy problem for the 
system of ordinary differential equations, multipoint 
integral conditions, and continuity conditions for the 
solution at the points of partition. Using the integral 
equation, that equivalent to the special Cauchy 
problem for the system of ordinary differential 
equation, we obtained a representation of the 
solution of the special Cauchy problem using the 
entered parameters at the assumption of invertibility 
of a some matrix. Based on this representation, a 
system of algebraic equations with respect to the 
parameters is constructed from the multipoint 
integral condition and the continuity conditions of 
the solution. We offer algorithm for solving the 
control problem for the ordinary differential 
equation with multipoint integral condition, and its 
numerical implementation.  

Statement of problem and scheme of 
parametrization method 

 
We consider a linear boundary value problem 

with a parameter for an ordinary differential 
equation with multipoint integral condition 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � 𝐴𝐴�𝑑𝑑�𝑑𝑑 � 𝐴𝐴��𝑑𝑑�𝜇𝜇 � 𝑓𝑓�𝑑𝑑�,     

 
 𝑑𝑑 𝑥 𝑥𝑥�,      𝜇𝜇 𝑥 𝑥𝑥�,     𝑑𝑑 𝑥 �0, 𝑇𝑇�,              (1) 

 

� 𝐶𝐶�𝑑𝑑�𝑑𝑑��
���

���
� 𝐵𝐵�𝜇𝜇 � � 𝑀𝑀�𝑑𝑑�𝑑𝑑�𝑑𝑑�𝑑𝑑𝑑𝑑

�

�
� 𝑑𝑑,    

  𝑑𝑑 𝑥 𝑥𝑥���,                          (2) 
 

where the �𝑛𝑛 � 𝑛𝑛�-matrix 𝐴𝐴�𝑑𝑑�, �𝑛𝑛 � ��-matrix 
𝐴𝐴��𝑑𝑑�, ��𝑛𝑛 � �� � 𝑛𝑛�-matrix 𝑀𝑀�𝑑𝑑�  and 𝑛𝑛-vector-

function 𝑓𝑓�𝑑𝑑� are continuous on �0, 𝑇𝑇�, the ��𝑛𝑛 �
�� � 𝑛𝑛�-matrices 𝐶𝐶�, � � 0, 𝑁𝑁 � �����������,  the ��𝑛𝑛 � �� �
��-matrix 𝐵𝐵�  are constants.  

The solution to problem (1), (2) is a pair 
�𝑑𝑑∗�𝑑𝑑�, 𝜇𝜇∗�, where continuous on �0, 𝑇𝑇� and 
continuously differentiable on �0, 𝑇𝑇� a function 
𝑑𝑑∗�𝑑𝑑� satisfies the ordinary differential equation (1) 
and condition (2) with 𝜇𝜇 � 𝜇𝜇∗. 

To solve the problem with parameter (1), (2), the 
approach developed in [24-26] is used, based on the 
algorithms of the parameterization method and 
numerical methods for solving Cauchy problems.  

Scheme of the method. Points 0 � 𝑑𝑑� � 𝑑𝑑� �
� � 𝑑𝑑� � 𝑑𝑑��� � 𝑇𝑇 are taken and the interval 
�0, 𝑇𝑇� is divided into 𝑁𝑁 subintervals: 

 
�0, 𝑇𝑇� � ⋃ �𝑑𝑑���, 𝑑𝑑�������� . 

 
Let 𝐶𝐶��0, 𝑇𝑇�, 𝑥𝑥��  be the space of continuous on 

�0, 𝑇𝑇� functions 𝑑𝑑� �0, 𝑇𝑇� � 𝑥𝑥� with norm ‖𝑑𝑑‖� �
max�𝑥��,��‖𝑑𝑑�𝑑𝑑�‖ ; 𝐶𝐶��0, 𝑇𝑇�, ��, 𝑥𝑥������� - the space of 

systems of functions 𝑑𝑑�𝑑𝑑� �
�𝑑𝑑��𝑑𝑑�, 𝑑𝑑��𝑑𝑑�, … , 𝑑𝑑����𝑑𝑑��, where 𝑑𝑑�� �𝑑𝑑���, 𝑑𝑑�� �
𝑥𝑥� are continuous on �𝑑𝑑���, 𝑑𝑑�� and have finite left-
sided limits lim������ 𝑑𝑑��𝑑𝑑� for all  r=�, 𝑁𝑁 � �����������, with 

norm ‖𝑑𝑑���‖� � max���,������������ sup
�𝑥�����,���

‖𝑑𝑑��𝑑𝑑�‖. 

The restriction of the function 𝑑𝑑�𝑑𝑑� to the  � �th 
interval �𝑑𝑑���, 𝑑𝑑�� is denoted by 𝑑𝑑��𝑑𝑑�, i.e. 𝑑𝑑��𝑑𝑑� �
𝑑𝑑�𝑑𝑑� for 𝑑𝑑 𝑥 �𝑑𝑑���, 𝑑𝑑��, r=�, 𝑁𝑁 � �����������. Then we reduce 
problem (1), (2) to the equivalent multipoint 
boundary value problem 

 
𝑑𝑑𝑑𝑑�
𝑑𝑑𝑑𝑑 � 𝐴𝐴�𝑑𝑑�𝑑𝑑� � 𝐴𝐴��𝑑𝑑�𝜇𝜇 � ��t�,  

 
𝑑𝑑 𝑥 �𝑑𝑑���, 𝑑𝑑��,   � � �, 𝑁𝑁 � ����������� ,             (3) 

 

� 𝐶𝐶�𝑑𝑑����𝑑𝑑��
�

���
� 𝐶𝐶��� lim����� 𝑑𝑑����𝑑𝑑� � 

� 𝐵𝐵�𝜇𝜇 � ∑ � 𝑀𝑀�𝑑𝑑�𝑑𝑑��𝑑𝑑�𝑑𝑑𝑑𝑑��
����

������ � 𝑑𝑑,    (4) 
 

lim������ 𝑑𝑑��𝑑𝑑� � 𝑑𝑑����𝑑𝑑��,    � � �, 𝑁𝑁�����.    (5) 
 

where (5) are conditions for matching the solution at 
the interior points of partition. 

The solution of problem (3) - (5) is the pair 
�𝑑𝑑∗�𝑑𝑑�, 𝜇𝜇∗� with elements 𝑑𝑑∗�𝑑𝑑� �
�𝑑𝑑�∗�𝑑𝑑�, 𝑑𝑑�∗�𝑑𝑑�, … , 𝑑𝑑���∗ �𝑑𝑑�� 𝑥
𝐶𝐶��0, 𝑇𝑇�, ��, 𝑥𝑥�������, 𝜇𝜇∗ 𝑥 𝑥𝑥�, where  functions 
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𝑥𝑥�∗�𝑡𝑡�, 𝑟𝑟 � �, � � ����������� ,  are continuously 
differentiable on �𝑡𝑡���, 𝑡𝑡��, which satisfies system 
of ordinary differential equations (3) and condition 
(4) with 𝜇𝜇 � 𝜇𝜇∗ and continuity conditions (5). 

We introduce additional parameters 𝜆𝜆� �
𝑥𝑥��𝑡𝑡����, 𝑟𝑟 � �, � � �����������, 𝜆𝜆��� � 𝜇𝜇. Making the 
substitution 𝑥𝑥��𝑡𝑡� � 𝑑𝑑��𝑡𝑡� � 𝜆𝜆� on every 𝑟𝑟-th 
interval �𝑡𝑡���, 𝑡𝑡��,    𝑟𝑟 � �, � � �����������, we obtain 
multipoint boundary value problem with parameters 

 
𝑑𝑑𝑑𝑑�
𝑑𝑑𝑡𝑡 � 𝐴𝐴�𝑡𝑡��𝑑𝑑� � 𝜆𝜆�� � 𝐴𝐴��𝑡𝑡�𝜆𝜆��� � ��t�,   

 
 𝑡𝑡 𝑡 �𝑡𝑡���, 𝑡𝑡��,   𝑟𝑟 � �, � � ����������� ,                (6) 

 
𝑑𝑑��𝑡𝑡���� � �, 𝑟𝑟 � �, � � ����������� ,         (7) 

 

� ��𝜆𝜆���
�

���
� ����𝜆𝜆��� � 

 
����� lim����� 𝑑𝑑����𝑡𝑡� � ��𝜆𝜆��� � 

 
� ∑ � 𝑀𝑀�𝑡𝑡��𝑑𝑑��𝑡𝑡� � 𝜆𝜆��𝑑𝑑𝑡𝑡��

����
������ � 𝑑𝑑,   (8) 

 
𝜆𝜆� � lim������ 𝑑𝑑��𝑡𝑡� � 𝜆𝜆���,    � � �, ������.    (9) 

 
 

A pair �𝑑𝑑∗�𝑡𝑡�, 𝜆𝜆∗� with elements  
𝑑𝑑∗�𝑡𝑡� � �𝑑𝑑�∗�𝑡𝑡�, 𝑑𝑑�∗�𝑡𝑡�, … , 𝑑𝑑���∗ �𝑡𝑡�� 𝑡
����, 𝑇𝑇�, ��, 𝑅𝑅�������,  

𝜆𝜆∗ � �𝜆𝜆�∗ , 𝜆𝜆�∗ , … , 𝜆𝜆���∗ , 𝜆𝜆���∗ � 𝑡 𝑅𝑅�������� is said 
to be a solution to problem (6)-(9) if the functions 
𝑑𝑑�∗�𝑡𝑡�, 𝑟𝑟 � �, � � ����������� ,  are continuously 
differentiable on �𝑡𝑡���, 𝑡𝑡�� and satisfy (6) and 
additional conditions (8), (9) with 𝜆𝜆� � 𝜆𝜆�∗, � �
�, � � �����������, and initial conditions (7). 

If the pair �𝑥𝑥∗�𝑡𝑡�, 𝜇𝜇∗� is a solution of problem 
(1), (2), then the pair �𝑑𝑑∗�𝑡𝑡�, 𝜆𝜆∗� with elements 
𝑑𝑑∗�𝑡𝑡� � �𝑑𝑑�∗�𝑡𝑡�, 𝑑𝑑�∗�𝑡𝑡�, … , 𝑑𝑑���∗ �𝑡𝑡�� 𝑡
����, 𝑇𝑇�, ��, 𝑅𝑅�������, 𝜆𝜆∗ �
�𝜆𝜆�∗ , 𝜆𝜆�∗ , … , 𝜆𝜆���∗ , 𝜆𝜆���∗ � 𝑡 𝑅𝑅��������, where 𝜆𝜆�∗ �
𝑥𝑥�∗�𝑡𝑡����, 𝑑𝑑�∗�𝑡𝑡� � 𝑥𝑥�∗�𝑡𝑡� � 𝑥𝑥�∗�𝑡𝑡����, 𝑡𝑡 𝑡
�𝑡𝑡���, 𝑡𝑡��,   � � �, � � �����������, 𝜆𝜆���∗ � 𝜇𝜇∗ 𝑡 𝑅𝑅�,  is the 
solution of problem (3)-(6). Conversely, if a pair 
�𝑑𝑑��𝑡𝑡�, 𝜆𝜆��  with elements 𝑑𝑑��𝑡𝑡� �
�𝑑𝑑���𝑡𝑡�, 𝑑𝑑���𝑡𝑡�, … , 𝑑𝑑�����𝑡𝑡�� 𝑡
����, 𝑇𝑇�, ��, 𝑅𝑅�������, 𝜆𝜆� � �𝜆𝜆��, 𝜆𝜆��, … , 𝜆𝜆����� 𝑡
𝑅𝑅��������,  is a solution of (3)-(6) , then the pair 
�𝑥𝑥��𝑡𝑡�, 𝜇𝜇�� defined by the equalities   𝑥𝑥��𝑡𝑡� � 𝑑𝑑��𝑡𝑡� �
𝜆𝜆��,  𝑡𝑡 𝑡 �𝑡𝑡���, 𝑡𝑡��,   � � �, � � �����������, 𝑥𝑥��𝑇𝑇� �

lim����� 𝑑𝑑���𝑡𝑡� � 𝜆𝜆�� and   𝜇𝜇� � 𝜆𝜆����, will be the 
solution of the original boundary value problem 
with parameter (1), (2).  

Let 𝑋𝑋��𝑡𝑡� be a fundamental matrix to the 
differential equation ��

�� � 𝐴𝐴�𝑡𝑡�𝑥𝑥 on �𝑡𝑡���, 𝑡𝑡��,   � �
�, � � �����������. 

Then the unique solution to the Cauchy problem 
for the system of ordinary differential equations (6), 
(7) at the fixed values 𝜆𝜆 � �𝜆𝜆�, 𝜆𝜆�, … , 𝜆𝜆���, 𝜆𝜆����  
has the following form

 

𝑑𝑑��𝑡𝑡� � 𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝐴𝐴�𝜏𝜏�𝑑𝑑𝜏𝜏
�

����

λ� � 𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝐴𝐴��𝜏𝜏�𝑑𝑑𝜏𝜏
�

����

λ��� � 

�𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝜏𝜏�
���� ,     𝑡𝑡 𝑡 �𝑡𝑡���, 𝑡𝑡��,   � � �, � � �����������.                                  (10) 

 
 

Substituting the corresponding right-hand sides 
of (10) into the conditions (8), (9), we obtain a 

system of linear algebraic equations with respect to 
the parameters 𝜆𝜆�, 𝑟𝑟 � �, � � �����������: 

 

� ��𝜆𝜆���
�

���
� ����𝜆𝜆��� � ��𝜆𝜆��� � ����𝑋𝑋����𝑇𝑇� � 𝑋𝑋����� �𝜏𝜏�𝐴𝐴�𝜏𝜏�𝑑𝑑𝜏𝜏

�

��

λ��� � 

�����𝑋𝑋����𝑇𝑇� � 𝑋𝑋����� �𝜏𝜏�𝐴𝐴��𝜏𝜏�𝑑𝑑𝜏𝜏
�

��

λ��� � 
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� � � 𝑀𝑀�𝑡𝑡� �𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝐴𝐴�𝜏𝜏�𝑑𝑑𝜏𝜏
�

����

λ� � 𝜆𝜆�� 𝑑𝑑𝑡𝑡
��

����

���

���
� 

� � � 𝑀𝑀�𝑡𝑡� �𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝐴𝐴��𝜏𝜏�𝑑𝑑𝜏𝜏
�

����

λ���� 𝑑𝑑𝑡𝑡
��

����

���

���
� 

� 𝑑𝑑 � ����𝑋𝑋����𝑇𝑇� � 𝑋𝑋����� �𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝜏𝜏
�

��

� 

� ∑ � 𝑀𝑀�𝑡𝑡�𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝜏𝜏�
���� 𝑑𝑑𝑡𝑡��

����
������ ,                                         (11) 

 

𝜆𝜆� � 𝑋𝑋��𝑡𝑡�� � 𝑋𝑋����𝜏𝜏�𝐴𝐴�𝜏𝜏�𝑑𝑑𝜏𝜏
��

����

λ� � 𝑋𝑋��𝑡𝑡�� � 𝑋𝑋����𝜏𝜏�𝐴𝐴��𝜏𝜏�𝑑𝑑𝜏𝜏
��

����

λ��� � 𝜆𝜆��� � 

� �𝑋𝑋��𝑡𝑡�� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝜏𝜏��
���� ,    � � �, ������.                                   (12) 

 
 

We denote the matrix corresponding to the left 
side of the system of equations (11), (12) by 𝑄𝑄∗�𝛥𝛥�� 
and write the system in the form 

 

𝑄𝑄∗�𝛥𝛥��𝜆𝜆 � �𝐹𝐹∗�𝛥𝛥��,   𝜆𝜆 𝜆 𝜆𝜆�������� ,   (13) 
 
where

  
𝐹𝐹∗�𝛥𝛥�� �

⎝
⎜⎜
⎛

�𝑑𝑑 � ����𝑋𝑋����𝑇𝑇� � 𝑋𝑋����� �𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝜏𝜏�
�� � ∑ � 𝑀𝑀�𝑡𝑡�𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝜏𝜏�

���� 𝑑𝑑𝑡𝑡��
����

������
𝑋𝑋��𝑡𝑡�� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝜏𝜏��

��⋯    ⋯     ⋯
𝑋𝑋��𝑡𝑡�� � 𝑋𝑋����𝜏𝜏�𝑓𝑓�𝜏𝜏�𝑑𝑑𝜏𝜏��

���� ⎠
⎟⎟
⎞

. 

 
 
It is not difficult to establish that the solvability 

of the boundary value problem (1), (2) is equivalent 
to the solvability of the system (13). The solution of 
the system (13) is a vector 𝜆𝜆∗ �
�𝜆𝜆�∗ , 𝜆𝜆�∗ , … , 𝜆𝜆���∗ , 𝜆𝜆���∗ � 𝜆 𝜆𝜆�������� consists of 
the values of the solutions of the original problem 
(1), (2) in the initial points of subintervals, i.e. 𝜆𝜆�∗ �
𝑥𝑥∗�𝑡𝑡����, � � �, � � �����������,   𝜆𝜆���∗ � �∗. 

Further we consider the Cauchy problems for 
ordinary differential equations on subintervals  

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 � 𝐴𝐴�𝑡𝑡�𝑑𝑑 � 𝑃𝑃�𝑡𝑡�,   

 
 𝑑𝑑�𝑡𝑡���� � �,    𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,   � � �, � � �����������,   (14) 

 
where 𝑃𝑃�𝑡𝑡� is either (𝑛𝑛 � 𝑛𝑛� matrix, or 𝑛𝑛 vector, 
both continuous on �𝑡𝑡���, 𝑡𝑡��,   � � �, � � �����������.  
Consequently, solution to problem (14) is a square 

matrix or a vector of dimension 𝑛𝑛. Denote by 𝑎𝑎�𝑃𝑃, 𝑡𝑡�  
the solution to the Cauchy problem (14). Obviously, 

 

𝑎𝑎�𝑃𝑃, 𝑡𝑡� � 𝑋𝑋��𝑡𝑡� � 𝑋𝑋����𝜏𝜏�P�𝜏𝜏�𝑑𝑑𝜏𝜏
�

����

,    
𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,      

 
where 𝑋𝑋��𝑡𝑡� is a fundamental matrix of differential 
equation (14) on the r-th interval. 

 
Numerical implementation of 

parametrization method 
 
We offer the following numerical 

implementation of algorithm based on the Runge–
Kutta method of 4th order and Simpson’s method.  

1. Suppose we have a partition ∆�:  � � 𝑡𝑡� �
𝑡𝑡� � ⋯ � 𝑡𝑡� � 𝑡𝑡��� � 𝑇𝑇. Divide each r-th interval 
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�𝑡𝑡���, 𝑡𝑡��,   � � 1, 𝑁𝑁 � 1����������, into 𝑁𝑁� parts with 
step ℎ� � �𝑡𝑡� � 𝑡𝑡�����𝑁𝑁�. Assume on each interval 
�𝑡𝑡���, 𝑡𝑡�� the variable �̂�𝑡 takes its discrete values: �̂�𝑡 �
𝑡𝑡���, �̂�𝑡 � 𝑡𝑡��� � ℎ�, … , �̂�𝑡 � 𝑡𝑡��� � �𝑁𝑁� � 1�ℎ�,  
�̂�𝑡 � 𝑡𝑡�,  and denote by �𝑡𝑡���, 𝑡𝑡�� the set of such 
points.  

2. Solving the Cauchy problems for ordinary 
differential equations 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 � 𝐴𝐴�𝑡𝑡�𝑑𝑑 � 𝐴𝐴�𝑡𝑡�,    

𝑑𝑑�𝑡𝑡���� � 0,    𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,    
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 � 𝐴𝐴�𝑡𝑡�𝑑𝑑 � 𝐴𝐴��𝑡𝑡�,    

𝑑𝑑�𝑡𝑡���� � 0,    𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,    
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 � 𝐴𝐴�𝑡𝑡�𝑑𝑑 � 𝑓𝑓�𝑡𝑡�,    

𝑑𝑑�𝑡𝑡���� � 0,    𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,   � � 1, 𝑁𝑁 � 1,����������� 
 
by using again the Runge–Kutta method of 4th order, 
we find the values of (𝑛𝑛 � 𝑛𝑛� matrices 𝑎𝑎��A, �̂�𝑡�,  
𝑎𝑎��𝐴𝐴�, �̂�𝑡�  and 𝑛𝑛 vector 𝑎𝑎��𝑓𝑓, �̂�𝑡� on �𝑡𝑡���, 𝑡𝑡��,   � �
1, 𝑁𝑁 � 1����������. 

3. Applying Simpson’s method on the set 
�𝑡𝑡���, 𝑡𝑡��,   we evaluate the definite integrals 

 
m�

�� � � M�𝜏𝜏�𝑑𝑑𝜏𝜏��
���� , 

 
m�

���A� � � M�𝜏𝜏�𝑎𝑎�
���A, 𝜏𝜏�𝑑𝑑𝜏𝜏��

���� , 
 

m�
���A�� � � M�𝜏𝜏�𝑎𝑎�

���A�, 𝜏𝜏�𝑑𝑑𝜏𝜏��
���� ,  

 
 m�

���𝑓𝑓� � � M�𝜏𝜏�𝑎𝑎�
���𝑓𝑓, 𝜏𝜏�𝑑𝑑𝜏𝜏��

���� , � �
1, 𝑁𝑁 � 1.����������� 

 
4. Construct the system of linear algebraic 

equations with respect to parameters 
 

𝑄𝑄∗���𝛥𝛥��𝜆𝜆 � ��∗���𝛥𝛥��,   𝜆𝜆 𝜆 𝜆𝜆�������� ,   (15) 
 

Solving the system (15), we find 𝜆𝜆��. As noted 
above, the elements of 𝜆𝜆��=(𝜆𝜆��

�, 𝜆𝜆��
�, … , 𝜆𝜆����� ) are the 

values of approximate solution to problem (1), (2) in 
the starting points of subintervals: 𝑥𝑥����𝑡𝑡���� � 𝜆𝜆���,
� � 1, 𝑁𝑁 � 1����������, 𝜇𝜇∗ � 𝜆𝜆���∗ . 

5. To define the values  of approximate 
solution at the remaining points of set �𝑡𝑡���, 𝑡𝑡��, we 
solve the Cauchy problems 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡 � 𝐴𝐴�𝑡𝑡�𝑥𝑥 � 𝐴𝐴��𝑡𝑡�λ����� � 𝑓𝑓�𝑡𝑡�,    

 
𝑥𝑥�𝑡𝑡���� � λ���,    𝑡𝑡 𝜆 �𝑡𝑡���, 𝑡𝑡��,   � � 1, 𝑁𝑁 � 1����������. 

 
And the solutions to Cauchy problems are found 

by the Runge–Kutta method of 4th order. Thus, the 
algorithm allows us to find the numerical solution to 
the problem (1), (2).  

To illustrate the proposed approach for the 
numerical solving linear boundary value problem 
with a parameter for an ordinary differential 
equation with multipoint integral condition (1), (2) 
on the basis of parameterization method, let us 
consider the following example. 

Example. We consider a linear boundary value 
problem with a parameter for an ordinary 
differential equation with multipoint integral 
condition 

 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡 � 𝐴𝐴�𝑡𝑡�𝑥𝑥 � 𝐴𝐴��𝑡𝑡�𝜇𝜇 � 𝑓𝑓�𝑡𝑡�,      

 
𝑥𝑥 𝜆 𝜆𝜆�,      𝜇𝜇 𝜆 𝜆𝜆�,     𝑡𝑡 𝜆 �0,1�,           (16) 

 
𝐶𝐶�𝑥𝑥�𝑡𝑡�� � 𝐶𝐶�𝑥𝑥�𝑡𝑡�� � 𝐶𝐶�𝑥𝑥�𝑡𝑡�� � 

 
�𝐵𝐵�𝜇𝜇 � � 𝑀𝑀�𝑡𝑡�𝑥𝑥�𝑡𝑡�𝑑𝑑𝑡𝑡�

� � 𝑑𝑑,     𝑑𝑑 𝜆 𝜆𝜆�.   (17) 
 

Here   𝑡𝑡� � 0, 𝑡𝑡� � �
�,  𝑡𝑡� � 1,   

𝐴𝐴�𝑡𝑡� � �𝑡𝑡� 2𝑡𝑡
1 𝑡𝑡 � 9�,    𝐴𝐴��𝑡𝑡� � � 2 𝑡𝑡 𝑡𝑡 � 3

𝑡𝑡� 0 3𝑡𝑡 �,  
 

𝐶𝐶� �
⎝
⎜
⎛

2 0
� ��
1 6
0 2
9 1 ⎠

⎟
⎞

,  𝐶𝐶� �
⎝
⎜
⎛

�3 1
5 2
3 0
8 6
1 9⎠

⎟
⎞

, 

 

  𝐶𝐶� �
⎝
⎜
⎛

�6 1
5 3
8 1
2 6
0 9⎠

⎟
⎞

, 𝐵𝐵� �
⎝
⎜
⎛

1 3 0
3 1 ��
0 � �6

�2 1 8
6 1 0 ⎠

⎟
⎞

, 

 

 𝑑𝑑 �

⎝
⎜
⎜
⎜
⎛

��2
���

�
���
��

���
�

���
� ⎠

⎟
⎟
⎟
⎞

,  𝑀𝑀�𝑡𝑡� �
⎝
⎜
⎛

1 0
𝑡𝑡 �2

𝑡𝑡 � 3 𝑡𝑡�
0 9

�3 1 ⎠
⎟
⎞

,     
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 𝑓𝑓�𝑡𝑡� � � �8𝑡𝑡� � 𝑡𝑡� � 25𝑡𝑡� � 2𝑡𝑡 � 30

�4𝑡𝑡� � 3�𝑡𝑡� � 𝑡𝑡� � 107𝑡𝑡 � 20�. 
 

We use the numerical implementation of 
algorithm. Accuracy of solution depends on the 
accuracy of solving the Cauchy problem on 
subintervals and evaluating definite integrals. We 
provide the results of the numerical implementation 
of algorithm by partitioning the subintervals [0, 0.5],  
[0.5, 1] with step h = 0.025. 

Solving the system of equations (15), we obtain 
the numerical values of the parameters 

 
λ��

� � � 7.00000083
�1.9999995��,    

 
 λ��

� � �7.50000135
3.00000449�,    

 

λ��
� � �

2.00000297
�3.00000131
8.99999832

�. 

 
We find the numerical solutions at the other 

points of the subintervals using Runge-Kutta 
method of the 4-th order to the following Cauchy 
problems 

 
𝑑𝑑𝑑𝑑��
𝑑𝑑𝑡𝑡 � ��𝑡𝑡�𝑑𝑑�� � ���𝑡𝑡�λ��

� � 𝑓𝑓�𝑡𝑡�,    
 

𝑑𝑑���𝑡𝑡���� � λ���,    𝑡𝑡 � �𝑡𝑡���, 𝑡𝑡��,   � � 1,2����. 
 

 
Exact solution of the problem (16), (17) is pair  

�𝑑𝑑∗�𝑡𝑡�, 𝜇𝜇∗�, where  𝑑𝑑∗�𝑡𝑡� � � 𝑡𝑡 � 7
4𝑡𝑡� � 9𝑡𝑡 � 2�, 

 𝜇𝜇∗ � �
2�3
9

�. 

 
The results of calculations of numerical 

solutions at the partition  points are presented in the 
following table:  

 
 

𝑡𝑡 𝑑𝑑���𝑡𝑡� 𝑑𝑑���𝑡𝑡� 𝑡𝑡 𝑑𝑑���𝑡𝑡�  𝑑𝑑���𝑡𝑡�
0 7.00000083 -1.99999956 0.5 7.50000135 3.00000449

0.025 7.02500086 -1.77493687 0.525 7.52500139 3.30381719
0.05 7.05000088 -1.54949918 0.55 7.55000142 3.61550487

0.075 7.0750009 -1.32331148 0.575 7.57500146 3.93544255
0.1 7.10000092 -1.09599878 0.6 7.60000149 4.26400522

0.125 7.12500094 -0.86718609 0.625 7.62500152 4.60156787
0.15 7.15000097 -0.63649839 0.65 7.65000155 4.94850549

0.175 7.17500099 -0.40356069 0.675 7.67500158 5.30519309
0.2 7.20000101 -0.16799798 0.7 7.7000016 5.67200565

0.225 7.22500104 0.07056472 0.725 7.72500161 6.04931816
0.25 7.25000106 0.31250243 0.75 7.75000162 6.4375056

0.275 7.27500109 0.55819013 0.775 7.77500161 6.83694297
0.3 7.30000111 0.80800284 0.8 7.80000158 7.24800522

0.325 7.32500114 1.06231555 0.825 7.82500153 7.67106734
0.35 7.35000117 1.32150326 0.85 7.85000144 8.10650427

0.375 7.3750012 1.58594096 0.875 7.8750013 8.55469097
0.4 7.40000123 1.85600367 0.9 7.90000111 9.01600237

0.425 7.42500126 2.13206638 0.925 7.92500083 9.49081337
0.45 7.45000129 2.41450409 0.95 7.95000044 9.97949887

0.475 7.47500132 2.70369179 0.975 7.9749999 10.48243371
0.5 7.50000135 3.00000449 1 7.99999916 10.99999269

 
𝜇𝜇�� � �����  𝜇𝜇�� � ����� 𝜇𝜇�� � �����  

2.00000297 -3.00000131 8.99999832 
 
For the difference of the corresponding values of 

the exact and constructed solutions of the  problem 
the following estimate is true:  

 

max���,���������𝑑𝑑∗�𝑡𝑡�� � 𝑑𝑑��𝑡𝑡��� � 0.000007 and 

𝑚𝑚𝑚𝑚𝑑𝑑‖𝜇𝜇∗ � 𝜇𝜇�‖ � 0.000003. 
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Conclusion 
 
In this work, we propose a numerical 

implementation of parametrization method for 
finding solutions to linear boundary value problem 
with a parameter for an ordinary differential 
equation with multipoint integral condition. Using 
the parametrization method, we reduce the 
considered problem to the equivalent boundary 
value problem with parameters. The unknown 
functions are determined from the Cauchy problems 
for the system of ordinary differential equations, and 
the introduced parameters are determined from the 
system of algebraic equations. A numerical 
algorithm for finding solution to the considered 
problem is constructed. The Cauchy problem is 
solved by Runge– Kutta method of 4th-order 
accuracy. The examples illustrating the numerical 
algorithms of parametrization method are provided. 
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