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Abstract. The objective of this paper is the simulation of thermal flow dynamics in a channel. The 
mathematical model in a two-dimensional formulation is described by Navier-Stokes equations, 
continuity and temperature equations. For the numerical simulation of the problem the Lattice Boltzmann 
method applying the D2Q9 model is used. The validity of this method is tested by comparing the 
numerical solution to the analytical solution of the planar channel flow and error rates are calculated for 
various sizes of the computational grid. The test problem of thermal Poiseuille flow in the channel was 
solved to deactivate the correctness of the developed algorithm. Very good agreement between the exact 
and numerical solution of this problem is shown. 
Key words: The lattice Boltzmann method, thermal flow dynamics, Poiseuille flow. 

 
 
Introduction 
 
Thermal flows play an important role in the flow 

dynamics. Recently, there has been an effort to 
increase the capability of the lattice Boltzmann 
method in order to solve for fluid flows including 
heat transfer [1, 2]. A detailed analysis can be found 
in [3]. 

Generally, the thermal lattice Boltzmann model 
(TLBE) can be divided into several categories [4]. 
The first is the multispeed scheme, the second is the 
double distribution function (DDF) scheme and the 
last is the hybrid thermal lattice Boltzmann equation 
(HTLBE) scheme [3]. The multi-speed scheme is a 
plain extension of the Boltzmann isothermal models 
with a lattice, in which only the velocity distribution 
function is affected. In double distribution function 
scheme, different distribution functions are used, 
one for the velocity field and the other for the 
temperature field or internal energy. The main 
advantage of the DDF scheme compared to the 
multi-speed scheme is to increase the numerical 
stability, and therefore it is widely used. The hybrid 
computational scheme combines the LBE and Finite 
difference (FD) or Finite volume (FV) methods [5]. 
In this paper we use DDF scheme.   

The goal of this paper is the numerical 
implementation of thermal flow dynamics in a 
channel in a two-dimensional case. With the help of 
LBE method the profiles of velocities and 
temperature at different values of parameters in the 
system of differential equations and at different time 
instants are investigated. 

 
Statement of the problem 
 
In this paper we considered 2-D thermal flow in 

planar channel. The flow driven by a body force. 
We set cold temperature at the bottom wall and hot 
temperature at the top wall of the channel  
(Figure 1).  

 
Figure 1 – The considered area 
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The governing equations can be written as [6]: 
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Here,   is the linear function of the temperature 
T  and xF  is the body force
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where  0  is the average density, 0T  is the average
temperature,   is the coefficient of thermal 
expansion.  

We assume that at the initial time, the velocity 
and temperature in the channel are zero. Periodic 
boundary conditions are used at the channel inlet 
and outlet for pTuu ,,, 21 . And the following
boundary conditions are applied on channel walls 
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Numerical method 

The lattice Boltzmann equation (LBE) method is 
a discrete model of a continuous medium. Currently, 
the LBE method may well compete with traditional 
methods of computational hydrodynamics, and in 
some areas (flows in a porous medium, multiphase 
and multicomponent flows) it has significant 
advantages [7-9]. By this method an intermediate 
scale model is used to simulate fluid flow. It applies 
simulation of the motion of fluid particles in order 
to capture the macroscopic parameters of the fluid. 
The area is discretized by uniform cartesian cells. 

Each cell contains a fixed number of distribution 
functions, which represent the number of fluid 
particles moving in these discrete directions. 
Depending on the dimension and the number of 
directions of velocity, there are various models that 
can be used. In the present study, a two-dimensional 
flow and a two-dimensional square lattice with nine 
discrete velocities (D2Q9 model) are examined. For 
each velocity vector, the value of the distribution 
function is stored. In the D2Q9 model (Figure 2), 
the velocities are calculated using the formulas  
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where txc  /  and k  – lattice velocity 

direction.  

Figure 2 – D2Q9-model 

Distribution functions are calculated by solving 
the lattice Boltzmann equation, which is a special 
discretization of the Boltzmann kinetic equation. 
After introducing the Bhatnagar – Gross – Crook 
approximation, we can formulate the Boltzmann 
equation in the form [10] 

 ,(x,t)f(x,t)f
τ
Δt(x,t)fΔt)Δt,te(xf i

eq
iiii 

where Δt denotes the lattice time step, ei is the 
discrete lattice velocity in the direction i, τ denotes 

the lattice relaxation time, eq
if  is the equilibrium

distribution function. The equilibrium distribution 
functions are calculated by the formula 
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where the values of the weight coefficients i  are 
as follows: 
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and 3/ccs   is the lattice speed of sound. 

The macroscopic variables for the density and 
velocity of a fluid are calculated as the first two 
moments of the distribution functions for each cell: 
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For the temperature field, the distribution g  is 
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The equilibrium distribution functions for the 
temperature field are determined by the formulas: 
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The temperature field is calculated by the 

formula 
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As the no-slip boundary condition in fixed walls 
of channel the mid-link bounce back scheme is used 
[6,11]. According to the scheme, the wall boundary 
is located half lattice away from the boundaries of 
the fluid nodes. At the boundary node, the outward 
post-streaming distribution is equal to the inward 
pre-streaming distribution: 

 
),,(),( txfttxf BiBi   

where Bx  is the coordinates of the boundary node, 

if  is the pre-streaming distribution function with 
discrete velocity ie , which points into the boundary. 

if  is the post-streaming distribution function in the 

direction opposite to ie . For the constant 
temperature boundary, the distribution function can 
be obtained as 

 
,2),(),( BiBiBi Ttxgttxg   

 
where BT  is the temperature of the top or bottom 
wall and i  is the weight coefficients. 

Algorithm for applying the lattice Boltzmann 
method: 

1. Discretization of the physical domain and 
nondimensionalization of the related parameters; 

2. Choice of simulation parameters; 
3. Domain initialization; 
4. Collision step; 
5. Application of the boundary conditions; 
6. Streaming step; 
7. Calculation of the macroscopic parameters; 
8. Verification of convergence criteria. If 

criterion is met, then end of routine, else go to 4. 
 
Analytical solution and numerical results 
 
In order to check the developed algorithm for 

solving the problem of thermal flow, the problem of  
two-dimensional Poiseuille flow in channel is 
solved. 

Table 1 sets the parameters for calculating the 
test problem. The simulation was performed with 
different sizes of the computational domain: 

100200,50100  yx NN . The maximum 
velocity umax in the channel and the sound speed cs 
are 0.1 and 0.5773, respectively. Kinematic 
viscosity v = 9.021 · 10–3. The height of the channel 
H = 1. The Reynolds number Re = umax · H/v ≈ 10. 
In the present study the Prandtl number 

7.0Pr 
k


. Relaxation parameters are defined as 

[12] 5.02 



tcs
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tc
k

s
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 Along the X  axis the constant pressure 
difference is maintained: 
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where p  is the pressure difference, 

inout ppp  , outp  and inp  are the pressure at
the outlet and at the inlet of the channel, 
respectively,   is the dynamic viscosity, outx  and

inx  are the outlet and the inlet boundaries,

respectively, topy  and boty  are the top and the
bottom walls boundaries, respectively. 

Table 1 – Simulation parameters 

Parameters
scaling factor, scale 1: 2scale   

number of points along the  x axis Nx 100xN scale   

number of points along the y axis, Ny 50yN scale 

relaxation parameter,   3 / 16 0.5    

maximum velocity in a channel, umax max 0.1 /u scale

kinematic viscosity, v (2 1) / 6  

Reynolds number, Re Re 10  
Prandtl number, Pr Pr 0.7

channel outlet pressure, outp 1outp   

The analytical solutions for the velocity and the 
temperature fields are calculated as [12,13]: 
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The comparison of the exact solution with the 
results of the numerical solution is observed in 
Figures 3 – 5.  

1L  and 2L  norms of error were calculated by 
the following formulas: 
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where the index n means numerical solution and the 
index b means analytical solution. 

Increasing the grid resolution helps to reduce the 
error norms. If we assume that the error norm is 
known for different grid sizes and their ratio of the 
sizes of each grid to the initial one is m, then we can 
determine the order of accuracy using the following 
formula: 



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ttn
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In the test problem, the error norms were 
calculated at time 1/ 2  Lt  . The accuracy orders
of the numerical algorithm depending on the grid 
size are presented in table 2. 

Figure 3 shows the predicted cross-sectional 
profile in the force-driven channel flow for velocity 
and comparison between LBM simulation and 
analytical solution. Solid line is the analytical 
solution and the symbol is the numerical result. 

Table 2 –  The accuracy orders of L1 and L2 of the velocity, depending on the grid size at t  ν⋅/ L2  =1

Grid size 1( )u L Order of accuracy, n 2( )u L Order of accuracy, n 
100 50 44.6600 10 3.8978  26.8264 10 1.9489

200 100 41.6972 10 3.8175  34.1198 10 1.9087
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Also, Figure 4 shows the temperature cross-
sectional variation at different time instants in 
comparison with the analytic solution. Solid lines 
are the numerical results and the symbol is the 
analytical solution. And Figure 5 demonstrates the 
temperature cross-sectional profiles in comparison 
with the analytic solution for different Prandtl  

numbers. Here, solid lines are the analytical 
solutions and the symbols are the numerical results. 
As can be seen from the figures, the numerical 
results agree well with the analytical solutions. The 
general results in terms of streamwise temperature 
and velocity for time instants 1.0t  and 1t  are 
shown in Figures 6 and 7, respectively.  

 
 

 
Figure 3 – Velocity profile of a 2D Poiseuille flow.  

Comparison of the exact solution with the result of the numerical solution at 
max1, 0, Pr 0.7, 0.1top botT T u    . 

 

 
Figure 4 – Temperature variation of a 2D Poiseuille flow.  

Comparison of the exact solution with the result of the numerical solution  
at max1, 0, Pr 0.7, 0.1top botT T u     
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Figure 5 – Temperature profiles of a 2D Poiseuille flow.  

Comparison of the exact solution with the result of the numerical solution at 
max1, 1, Pr 0.7 Pr 1.5, 0.1top botT T and u      

 

 
(a) 

 
(b) 

Figure 6 – Streamwise temperature at Pr 0.7 , Re 10  and  
computational time 1.0t (a) and 1t (b) 

 

 
(a)  

(b)
 

Figure 7 – Streamwise velocity at Pr 0.7 , Re 10  and  
computational time 1.0t (a) and 1t (b) 
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Conclusion 
 
The basic aim of this paper is the development of 

mathematical model for thermal flow in a channel 
and the implementation of numerical simulation of 
the problem by the Lattice Boltzmann method 
applying the D2Q9 model. The validity of this 
method is tested by comparing the numerical 
solution to the analytical solution of the planar 
channel flow. The comparison of the exact solution 
with the numerical solution for test problem of 
thermal Poiseuille flow given in Figures 3–5 shows 
a very good agreement and relationship. It is 
determined that the numerical method has a second 
order of accuracy in time. This means that the 
developed algorithm may well be applied to solving 
the problem of the dynamic thermal flow in a three-
dimensional region. This result will be obtained and 
shown in a future research. 
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