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Nonexistence of travelling wave solution  

of the Korteweg-de Vries Benjamin Bona Mahony equation 
 

 
Abstract. This paper is devoted to the Korteweg-de Vries Benjamin Bona Mahony equation in an infinite 
domain. The paper discusses weak solutions of the Korteweg-de Vries Benjamin Bona Mahony equation 
without any conditions at infinity. This particular problem arises from the phenomenon of long breaking 
wave with small amplitude in fluid. In fluid dynamics, a breaking wave is a wave whose amplitude 
reaches a critical level at which some process can suddenly start to occur that causes large amounts of 
wave energy to be transformed into turbulent kinetic energy. 
For the Korteweg-de Vries Benjamin Bona Mahony equation, we obtain the conditions of blowing-up of 
travelling wave solutions in finite time. Moreover, there is an explicit upper bound estimate for the 
wavelength of the corresponding singular traveling wave, depending on the speed of waves. The proof of 
the results is based on the nonlinear capacity method. In closing, we provide the numerical examples. 
Key words: Breaking waves, Korteweg-de Vries-Benjamin-Bona-Mahony equation; blow-up of solution, 
travelling wave solution. 

 
 
1. Introduction  
 
1.1. Breaking waves 
  
In fluid dynamics, a breaking wave is a wave 

whose amplitude reaches a critical level at which 
some process can suddenly start to occur that causes 
large amounts of wave energy to be transformed 
into turbulent kinetic energy. At this point, simple 
physical models that describe wave dynamics often 
become invalid, particularly those that assume linear 
behavior. 

Breaking of water surface waves may occur 
anywhere that the amplitude is sufficient, including 
in mid-ocean. However, it is particularly common 
on beaches because wave heights are amplified in 
the region of shallower water (because the group 
velocity is lower there). There are three basic types 
of breaking water waves [1]. They are spilling, 
plunging and surging:  

 

 
Figure 4 – Types of breaking water waves 

 
 
1.2. Mathematical model 
 
In this section we present the well-known 

mathematical model of the Korteweg de Vries-
Benjamin-Bona-Mahony equation (see. [2]). 
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One of the well-known non-linear equations that 
embody both variance and non-linearity and is 
actively used in applications is the Korteweg-de 
Vries equation [3] which models the undirectional 
propagation of weakly nonlinear and weakly 
dispersive waves: 

 
�� + � �1 + ��

� �� �� +
���
� ���� = 0,       (1) 

 
where � is the vertical excursion of the free surface 
above the still water level, ℎis the uniform 
undisturbed water depth and � = ��ℎ is the speed 
of linear gravity waves (� being the gravity 
acceleration). 

The Benjamin-Bona-Mahony equation is an 
alternative to the Korteweg-de Vries equation [4] 
which is described as follows: 

 

�� + � �1 + 3ℎ
2 �� �� −

�ℎ�
6 ���� = 0. 

 
We consider the following scaled dependent and 

independent variables: 
 

� � �
�� , � � �

� , � � ��
� , 

 
where �� is the characteristic wave amplitude and � 
is the characteristic wavelength. In dimensionless 
variables KdV equation (1) reads: 

 

�� + �1 + 3�
2 �� �� +

��
6 ���� = 0, 

 
where parameter � = ��

�  measures the nonlinearity 

and � = �
�  is the dispersion parameter. The relative 

importance of these two effects is measured by the 
so-called Stokes-Ursell number [5]: 

 

� = �
�� ≡

����
ℎ� . 

 
The last equation can be further simplified if we 

perform an additional change of variables: 
 

� � 3��
�� �, � � √6

� (� − �), � � √6
� �, 

 
which yields the following simple equation 
including explicitly the Stokes-Ursell number��:  

�� + ���� + ���� = 0. 
 
The last scaled KdV equation can be further 

generalized by using the low-order asymptotic 
relations in order to alternate higher order terms as it 
was proposed by Bona and Smith [6]. This step is 
rather standard and we do not provide here the 
details of the derivation [7]: 

 
�� + ���� + ���� − ����� = 0,       (2) 

 
where � � �. The equation (2) is so-called 
Korteweg-de Vries-Benjamin-Bona-Mahony 
equation. 

We note that for a particular value of the Stokes-
Ursell number � = 1 another simpler scaling is 
possible when all the lengths (� and �) are scaled by 
the mean water depth ℎ. 

 
1.3. Statement of the problem 
 
We consider one of the mathematical problem of 

the breaking water waves, the Korteweg-de Vries-
Benjamin-Bona-Mahony equation: 

 
�� + ��� + ���� − ���� − �� = 

 
= 0, � � 0, � � �.                         (3) 

 
The Korteweg-de Vries-Benjamin-Bona-Mahony 

equation has important application in different 
physical situations such as waves on shallow water, 
and processes in semiconductors with differential 
conductivity. 

In [8], traveling-wave solutions �(�, �) �=
��(��� ���) are sought for the equation (3) which 
describes wave the processes in semiconductors 
with strong spatial dispersion. In [8-12] the authors 
obtained sufficient conditions for the finite time 
blow-up of solutions of time and space initial 
problems for the Korteweg-de Vries and Benjamin–
Bona–Mahony type equations. 

In this paper, based on the method of nonlinear 
capacity [13-15], the existence of singular travelling 
wave solutions of the equation (3) is proved. 

 
2. Singular travelling wave solutions 
 
 We consider the traveling wave type solutions 

of the Korteweg-de Vries-Benjamin Bona Mahony 
equation (3): 

�(�, �) = �(�), 
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where � = � − �� and � is the wave velocity. Then 
�(�) satisfies 

 
(1 + �)���� + ��� − (1 + �)�� = 0.       (4) 

 
Equation (4) admits the following integrals: 
 

(1 + �)��� + ��
� − (1 + �)� + � = 0,      (5) 

 
where � is an arbitrary constant. 

 
2.1. Nonexistence of travelling wave solution 
 
A weak solution of (5) is a function � �

��(�), � � � that satisfies the integral identity 
 

� ��(�)�(�)��
�

= 

= −2(1 + �)� �(�)����(�) − �(�)���
�

− 

 
−2� � �(�)���                          (6) 

for � � ���(�). 
We multiply equation (5) by a nonnegative test 

function � � ���(�) with compact support. Then 
after integration we obtain (6). Hence, by the Young 
inequality with parameter � � 0, we find that 

 
� ��(�)�(�)��� ≤ (���)

� � ��(�)�(�)��� + 
 

+�(1 + �)� ����(�) − �(�)��
�(�) ��

�
− 

 
−2� � �(�)��.�                           (7) 

 
We now take the test function: 
 

�(�) = ��(�), � =
�
�, 

where � ≥ 2 is a free parameter and the function 
0 ≤ �� � ��(�) such that 

 

��(�) = �1������|�| ≤ 1,
0������|�| ≥ 2. 

 
Let the function �� satisfies the following 

properties 
 

� = � |����(�) − ����(�)|�
��(�)

�

��
�� � �, 

 
and 

� = � ��(�)�� � �.
�

��
 

 
Then, if � = � + 1 the inequality (7) implies 
 

(1 + �)(2 + �) ��� ≥ 2��. 
 
From this it directly follows that if there exist � 

such that the inequality (7) holds, then there is no 
such bounded travelling wave solution of equation 
(5). 

Then the following results are true 
 
Theorem 1. The equation (4) with support � ≥

2, satisfying the inequality  
 

� � (���)(���)�
����                   (8) 

 
does not admit a solution.  

 Thus, a sufficient condition for the existence 
of an unbounded traveling wave with a wavelength 
�∗ is the fulllment of the inequality 

 
2��

(� + 1)(� + 2) � �
�
� 

 
with � � �∗. 

 
2.2. Numerical examples 
 
In this subsection we consider some numerical 

examples for equation (5) with different viscosities. 
We consider some initial data (at � = ��) for a 
traveling wave. In this case, we note that the 
nonexistence of a solution to equation (5) depends 
on the conditions (8). 

First, consider an example where the wave 
velocity is small enough. That is, consider a uid 
with a velocity between zero and one. Then, as seen 
from the Figure 1, the traveling wave breaks 
relatively quickly.  

Let us now study a uid with a velocity between 
50 and 100. In this case, the time of breaking the 
wave slightly increases. It is easy to see from the 
Figure 2. 
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Figure 2 – Singular travelling waves 

 
 

   

 
Figure 3 – Breaking travelling waves 

 
 

Now let the uid velocity be large enough. That 
is, consider a uid with a velocity of about one 

thousand. In this case, as seen from the Figure 3 the 
time of breaks of traveling waves will be quite large.

 
 

 

   
Figure 4 – Breaking travelling waves 
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Analyzing the above examples, we come to the 
conclusion that with an increase of the wave 
velocity, the time of wave break-up increases. 
 

Conclusion 
 
The present paper is devoted to the Korteweg-de 

Vries-Benjamin-Bona-Mahony equation in an 
infinite interval. This particular problem arises from 
the phenomenon of long breaking waves with small 
amplitude in fluid. For the Korteweg-de Vries-
Benjamin-Bona-Mahony equation, we proved the 
nonexistence of the singular travelling wave 
solutions. Moreover, we provide some examples. 
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