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Variational method for approximate solution of the Dirichlet problem 
 
 

Abstract. Several numerical methods can be used to approximate the solution of the problem. In order to 
determine the most effective of them, it is necessary to carefully study each method. The most efficient 
approximation method is characterized by properties such as high accuracy of the solution, fewer 
iterations and parameters in the calculation, calculation speed, etc. 
In this paper we consider the Dirichlet problem for the Poisson equation described by the initial-boundary 
value problem for the elliptic type of the second order. As an effective iterative method for its 
approximate solution, variational methods for constructing difference equations and variational methods 
for constructing iterative algorithms were used. The article presents the results of calculations developed 
using the variational method for the selected model problem. Examples of calculations for model 
problems are given. The results of the computational experiment demonstrate the high efficiency of the 
proposed iterative method. 
Key words: Dirichlet problem, difference scheme, Ritz method, conjugate gradient method.  

 
 
Introduction 
 
Finding in an analytical form of the problems 

solution of mathematical physics is fraught with 
considerable mathematical difficulties. Known 
results apply only to the simplest cases. In other 
cases, are used different numerical methods of the 
approximate solution.  

In this paper, is consider an elliptic differential 
equation. At the solution: 

1) To construct difference equations was used 
a variance method, proposed in 1908 by German 
mathematician V. Ritz, which is called Ritz method. 
The solution found by this method un(x), under 
certain conditions, tends to exact solution u(x), 
when n .  

Questions of convergence of solutions obtained 
by the Ritz method are considered in numerous 
papers and monographs.  

2) To construct iterative algorithms, was used 
the method of conjugate gradients, which stands out 
for its efficiency among the known iterative 

methods used to solve systems of linear algebraic 
equations.  

In solving the problem, the Ritz method [1-2] 
was used to construct the difference equations, 
iterative algorithms were constructed by the method 
of conjugate gradients [3-4]. Comparing the results 
obtained by the variational method with the results 
obtained in the literature [4-7], it was found that the 
advantage of the chosen variational method is the 
simplicity and efficiency of memory use. Such 
advantages of this method will certainly be 
acceptable when solving large-scale problems. 

 
Variational methods for constructing 

difference equations. 
 
Consideration of the problem in general shape in 

the operator form  
 

fLu  ,  Lu                           (1) 
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when  L  – is an operator domain L   
This task is equivalent to the corresponding 

variational problem.  
 

 
 

 vJuJ
Lv 

 min ,                     (2) 

 
when      vfvLvvJ ,2,  .  

Consideration of the Ritz method use in solving 
an elliptic differential equation of the form  
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with boundary condition  
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D
u                          (4)  

 
where D is a bounded domain with a piecewise 
linear boundary D ,    xAxA jiij   bounded 

functions and for an arbitrary vector  /
21 ,   is 

done inequality  
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with positive constants 10   .  

It can be shown that the operator of problems (3) 
and (4) is symmetric and positive definite, and the 
problem itself reduces to finding a function that 

minimizes in space  DW
1

2



 a quadratic functional  
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  (5) 

 
To find an approximate solution of problem (5), 

is applied the Ritz method with special-type hF  
subspaces that satisfy condition (4).  

After, we construct hF  subspaces. To simplify 
the presentation, it is illustrated by the example of 
piecewise linear approximations, when domain  
 

  1,0:, 2121  xxxxD  is a square. This area 
is covered with a uniform square grid with a pitch 

1
1



N

h  and then divide each of the squares lkD ,  

with diagonal. All the internal vertices of the 
triangles are numbered through N

lklkр 1,, 
, the union 

of all triangles with a point of its vertex lkр ,  mark 

through h
lkD , .  

h
lkD ,  can be represented as a union of six 

triangles  6

1,, m
h

mlkD , the order of numbering is 
indicated in fig.1 

 

 
Figure 1 –  6

1,, m
h

mlkD triangle designation 

 
 
To each internal node ),( lk yx , Nlk ,1,  of 

the grids is assigned a piecewise linear basic 
function  yxlk ,, . We define each of these 

functions  yxlk ,,  for the entered grid.  

To set  yxlk ,,  analytical, enough for each 

triangle entering the carrier  yxlk ,, , to create an 
equation for the plane passing through the unit in 

lkр , , and in the other two of its vertices through 

zero. Calculating basic functions  yxlk ,,  in each 

of triangles  6

1,, m
h

mlkD  we build a system of basic 
functions 
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To build an approximate )(xuh solution of the 

problem (1) and (2) we apply Ritz method using 
basis   N

lklk x
1,, 

   
 

 xxu lk

N

lk
lk

h
,

1,
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As a result, comes a system of linear equations 
 

gA                                 (8)  
 

where  TN 2,...,, 21   - vector, made up from 

decomposition coefficients   N
lklklkN 1,,1    , 

 TNgggg 2,...,, 21 - vector with components  
 

  NlkdDxfgg
lkD
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,

,,1     (9) 

 
and the elements of matrix A are calculated by the 
formulas  
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We consider Dirichlet problem in the area D 
with border D  with variable coefficients ),( yxp  
and ),( yxq   
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with boundary condition  

 
0

D
u                           (12) 

 
The equation (10) is multiplied by the function 

),( yxu  and integrated by D  in parts, given the 
boundary condition (12) we obtain 
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According to (5) we construct the functional  
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To apply the Ritz method in (13) the function 

),( yxu  replacing by decomposition (7) we get  
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Next, the derivatives are found and equating to zero, we get the following equations  
 

      

       

, , ,
,

, 1,

, ,
, ,

, 1

( , )

( , ) , 0, , 1,..., .

h Nk l k l k l
k l

k lk l D

N
k l k l

k l k l
k lD D

J u x x
p x y dD

x x

x x
q x y dD f x y x dD k l N

y y

  




 
 





   
      

  
       



 
 

 
Taking lk ,  out from bracket, it is put in the form of  
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Thus, according to (9) and (10) introducing the notation  
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we get a system of linear algebraic equations (8). 
Given the symmetry and block tridiagonal of 

matrix A , it is enough to define  
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I. Accroding (13), where lkji ,,  we find lk
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We calculate the integrals in each of the areas 
h

lkD , , taking into consideration form of basis 

function  yxlk ,,  in considered area. 
Further, all found six values are substituted in 

(15). In this case, we combine integrals with the 
same values and use the notation  
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that the vertexes lkp ,  and 1, lkp  are in triangle 1D  

and 6D . So, it means, 1,
,
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lka  are defined only in this 
area.  
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The found values of the integrals, substituting in 

(19) and using the notation (17) we get  
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III. To find lk
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Found values lk

lka ,1
,
 , in the triangles 1D  and 2D  

substitute in (21) with (16) and get  
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IV. It remains only to identify the element, 
1,1

,
 lk

lka . For that the vertex lkp , , needs to be moved 
firstly for one pitch to left and then for one pitch up. 
According to fig.1. it is seen that lkp ,  and 1,1  lkp  

are the vertexes of the triangles 2D and 3D . But 
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with the selected shift of lkp , the vertex 1,1  lkp  
would not belong to any of six triangles. Therefore  

 
01,1
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lka                            (23) 

 
All found values (18), (20), (22), (23) 

substituting in (8), taking into account the symmetry 
of the matrix A we get  

 

1 1 1 1 , 1 , 1, , , , ,
2 2 2 2 2

1 , 1 1 1, 1 1,, , ,
2 2 2

; , 1,

k l k lk l k l k l k l k l

k l k l k lk l k l k l

P Q P Q Q

Q P P k l N

 

  


    

  
  

 
     

 

   

   

  
  (24) 

 
Allowing in (24)  
 

 1 1 1, 1 1 ,, , , ,
2 2 2

1 1,,
2

; , 1,

k l k lk l k l k l k l

k lk l

A P P P

P k l N

  




  




 
     

 

 

  


  (25) 

 

 2 1 , 1 1 1 ,, , , ,
2 2 2

1 , 1,
2

; , 1,

k l k lk l k l k l k l

k lk l

A Q Q Q

Q k l N

  




  




 
     

 

 

  


   (26) 

 
Then, using АAA  21 , we get system (8)  
 
Variational methods for constructing 

iterative algorithms  
 
For numerical solution of system (6), one can 

apply variational type methods, such as, the method 
of rapid descent, the method of minimal corrections, 
the method of conjugate gradients, etc.  

The conjugate gradient method is most 
preferable for systems with a self-adjoint positive 
matrix 0*  AA . With poor conditioning of the 
matrix, this method does not always become 
computationally stable.  

Operator A is self-adjoint and positive definite 
operator in the space of grid functions 0

hH . Into 
0
hH  we insert scalar product  
 

  





1

1,
21,,,

N

ji
jiji hhvuvu  

 

and norm  
 

 uuu , . 
 
To solve an equation of the form gA   we 

use the conjugate gradient method. The iteration 
process is implemented in the following order:  

I.  Preparation before the iterative process   
For given 0

, ji  the residual is calculated 

  jijijiji gArs ,,
00

,
0
,   21 ,...,1,,...,1 njni  ;  

II. k  – integration of the method  

1) Calculate the parameter: 
 
 1

,,

1
,

1
,

,
,





 k
ji

k
ji

k
ji

k
ji

k sAs
rr

 , 

2) k
jik

k
ji

k
ji Asrr ,

1
,,     

3) The following approximation of the solution 
is calculated by the formula: k

jik
k

ji
k

ji s ,
1

,,      

4) Calculate the parameter: 
 
 1

,
1

,

,,

,
,

 k
ji

k
ji

k
ji

k
ji

k rr
rr

   

5) The auxiliary value is calculated by the 
formula: k

jin
k
ji

k
ji srs ,,
1

,    
where  

 

     

   

1 1, , 1 , 1,2, , ,
1 2 2

1 , 1 , 1 , , 12 , ,
2 2 2

1

1 ;

k
i j i j i j i ji j i j i j

i j i j i j i ji j i j

As P s s P s s
h

Q s s Q s s
h

 
 

 
 

 
     

 
 

    
 

 

 

 

Nji ,1,   
 
\This process continues until the criterion for 

stopping the iterations   kk 1  is satisfied.  
 
Calculation examples   
 
To illustrate the proposed method, we consider 

an example of the problem (11) – (12) in a circle.  
Let in a rectangular area D  is a circle   with 

R radius and center  21 ,сс . It is required to find an 
approximate solution of the Dirichlet problem for 
the Poisson equation.  

 

212
2

2

2
1

2

xx
x
u

x
u







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In the circle, under the condition  
 

  0, 21 


xxu  
 
Then  
 

  22121121 ,,, bxbaxaxxD  , 
 

      22
22

2
1121 ,, Rcxcxxx  , 
 

      22
22

2
1121 ,, Rcxcxxx  . 

 
Auxiliary problem of the fictitious domains 

method  
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Were conducted numerical experiments. Below 

is the table 1 for the number of iterations N and 
calculation errors Ch uu   at 10121  nn  and 
various meanings   for Ritz method. 

  
 
Table 1 – Results of numerical experiments 

 

1n  2n  /1  N  Ch uu   

101 101 102 1221 0.003888
101 101 103 3395 0.003820
101 101 104 7920 0.003819
101 101 105 12737 0.003818
101 101 106 20042 0.003817
101 101 107 26592 0.003816

 
 

The results show that with an increase in the 
number of grid nodes, the error in the solution 
decreases. In fig. 2 shown the result of solving the 

problem using an explicit difference scheme with 
4

* 10   on a uniform grid with a size of 101 
× 101. Therefore, the original system of linear 
algebraic equations has 101 × 101 unknowns.  

 

 
Figure 2 –  Solution of the Dirichlet problem for the 

Poisson equation in a circle 
 
 
Conclusion  
 
Today, the task of developing and modifying 

numerical methods remains relevant. However, the 
development process of computing technology 
shifts the emphasis from the creation of new 
numerical methods to the study and classification of 
old ones in order to identify the best. Now for 
modern powerful computers, such characteristics as 
the amount of required memory, and the number of 
arithmetic operations are not necessarily in the 
foreground. More preferred are those methods that 
are distinguished by the ease of implementation on a 
computer, and allow to solve a wider class of 
problems. 

The special advantages of this method are its 
simplicity and low memory costs, which makes it 
effective in solving large-scale problems. 

The results of the computational experiment 
confirm the efficiency of the proposed method for 
solving the Dirichlet problem for the Poisson 
equation and its rather high efficiency.  
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