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Determination of the coefficients  
of nonlinear ordinary differential equations systems  

using additional statistical information 
 
 

Abstract. The study of the clinical and epidemiological features of tuberculosis combined with HIV 
infection (TB + HIV) is one of the priorities in the prevention of infectious diseases and is necessary to 
improve the quality of medical care for patients. So this article is devoted to the mathematical model of 
epidemiology, its’ investigation and analysis. The previous works showed what identifiability analysis is 
and considered methods of performing them, such as orthogonal method, eigenvalue method and etc., for 
more precise clarification of model parameters. However, the choice of solving the inverse problem to 
restore unknown parameters is playing a huge role. So here was showed the combination of two 
numerical algorithms, as stochastic method of simulating annealing to determine the region of the global 
minimum and gradient method to determine the inverse problem in a region, of solving the inverse 
problem that will help to create effective treatment plan for the elimination and treatment of the disease. 
Key words: epidemiology, inverse problems, ODE, optimization. 

 
 
Introduction 
 
Systems of nonlinear ordinary differential 

equations (ODE) describe processes in biology and 
medicine, namely, immunology, epidemiology, 
pharmacokinetics, sociology, economics and etc. 
The equations are built on the basis of the law of 
mass balance and operate in a closed system. The 
coefficients of ODE systems characterize important 
parameters of the immune response, the spread rate 
of the disease in the region, the absorption rate of 
drugs, etc., which cannot be determined from 
statistical data and need to be clarified. Specified 
individual parameters will allow you to create the 
most effective treatment plan and action plan for the 
elimination and treatment of the disease. One way to 
identify the extent of damage to the immune system, 
namely the parameters of the disease, the immune 

response, as well as determining the optimal 
treatment, is mathematical modeling. 

According to the characteristics of the immune 
response, it is already possible to numerically 
analyze the optimal control programs for treating a 
disease. Example of mathematical model of 
epidemiology (co-infection of HIV and 
tuberculosis) shows studies on the identifiability of 
mathematical models for ODE systems, stability of 
inverse problems and methods for their numerical 
solution and computational optimization, which are 
necessary to develop an algorithm for regularizing 
the solution of inverse problems.  

In [1] the deterministic model of TB dynamics 
was observed, they also conducted identifiability 
analysis by constructing sensitivity matrix to restore 
the identifiable parameters. The identification of 
parameters was conducted by solving the linear least 
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squares problem using the QR factorization with 
column pivoting. 

 
Model 
 
The cause of tuberculosis (TB) is a bacterium 

called Mycobacterium tuberculosis, which usually 
affects the lungs, and TB is spread by airborne 
droplets (coughing, sneezing, etc.). People living 
with HIV (PLHIV) are at much greater risk of 
contracting TB than HIV-negative people. If TB is 
not treated properly, death is possible. Tuberculosis 
is one of the leading causes of death among PLHIV 
in the world. It can manifest itself in two ways: 
latently infected with TB and active way of TB.  

Latently infected with TB means that not all 
people infected with the bacteria become ill with 
TB. When a person is infected with TB, but has no 
symptoms and does not feel sick, it is considered 
that he has a “latent infection of TB”. Such a person 
is not infectious and is not able to infect other 
people. In about 5–10% of cases, a latent infection 

leads to tuberculosis. This happens if an infected 
person does not have sufficiently strong immunity 
to protect against bacteria. A person with active 
tuberculosis feels sick; he may have the following 
symptoms: cough for several weeks, chest pain, 
blood or sputum when coughing, weakness, fatigue, 
weight loss, lack of appetite, chills, fever and night 
sweats. 

Co-infection of TB and HIV is a situation where 
a person lives with HIV and latent or active TB at 
the same time. Worldwide, TB is the leading cause 
of death among PLHIV, as it accounts for 25% of 
all deaths among PLHIV. Given the detrimental 
effects of HIV infection on the immune system, 
PLHIV with TB co-infection are 20 times more 
likely to develop active TB [2]. In addition, it has 
been proven that tuberculosis increases viral 
replication in PLHIV and accelerates the 
progression of HIV, being unhealed. 

A mathematical model of the epidemiology of 
co-infection with tuberculosis (TB) and HIV is 
considered [3]: 
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                           (1) 

 
 
Here S(t) – number of non-infected individuals, 

L(t) – number of individuals latently infected with 
TB (without HIV), I(t) – number of individuals with 
active TB (without HIV), T(t) – number of 
individuals cured of TB (without HIV), J1(t) – the 
number of individuals infected with HIV (without 
TB), J2(t) – the number of individuals infected with 
HIV and latently infected with TB, J3(t) – number of 
individuals infected with HIV and active TB, A(t) – 

number of individuals with AIDS. � � � � � � � �
� � �� � �� � �� � �  – total population, � � � �
� � � � �� � ��- active population, �∗ � �� � �� � �� 
– people infected with HIV [4]. 

This model contains many parameters, 6 of 
which are individual in each specific case and need 
to be clarified � � (k, k∗, r�, α�, α�, α�)� . The 
values of the parameters � are given in Table 1. 
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Table 1 – Definitions of parameters used in the model (1) 

Parameter Definition Units Value
� the rate of development of active TB (without HIV) year 0,05 
�∗ the rate of development of active TB (with HIV) year 0,25 
�� TB treatment rate (without HIV) human/ year 1 
�� group HIV transition rate J1(t) year 0,1
�� group HIV transition rate J2(t) year 0,2
�� group HIV transition rate J3(t) year 0,5

Let additional information about system (1) be 
known at time points ��  of only three groups of 
individuals: 

�(��) � ��, ��(��) � ���, 

�(��) � ��, � � �, � , � 

The mathematical model of co-infection of 
tuberculosis and HIV consists of 8 equations, but 
measurement data are known only about 3 of them 
once a year during the 5 years. That is, we have M = 
3, K = 5. This model contains many parameters, 6 of 
which are individual in each specific case and need 
to be refined. Based on the analysis of identifiability 
carried out by one of the methods such as the 
orthogonal method [5], condition numbers, etc. [6], 
more precisely, in this work, by the method of 

eigenvalues [7-8], we will determine only 4 
identifiable parameters � �  (�, ��, ��, ��)�  from 
additional statistical information. 

In the case of matrices of large dimensions or 
non-uniformly filled matrices, the eigenvalue 
method is unstable [9]. In such cases, it is 
recommended to use the method based on singular 
numbers [10], since it is known [11] that the 
condition number of the sensitivity matrix 
determines the convention (incorrectness) of system 
(2). The greater the condition number, the higher the 
incorrectness of the inverse problem (for the 
inversion of the sensitivity matrix, the use of 
regularization methods is required). 

The values of the parameters, depending on the 
population, and the initial data are known are given 
in Table 2. 

Table 2– Values of parameters and known initial data used in the model (1) 

Parameter Value Unit
S(0) 430 in thousands of people
�(0) 3854.5 in thousands of people 
�(0) 16.875 in thousands of people 
�(0) 3.412 in thousands of people 
�1(0) 3.2757 in thousands of people 
�2(0) 27.7 in thousands of people 
�3(0) 1.4 in thousands of people 
�(0) 0.357 in thousands of people 
Λ 43 in thousands of people
� 4315.76 in thousands of people 
� 0.0143 in thousands of people 

�*� 0.529 Nondimensionalized 
�* 0.222 Nondimensionalized 
� 0.997 Nondimensionalized 

� *� 0.99927 Nondimensionalized
� 0.06685 Nondimensionalized
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In vector form, the inverse problem is written as 
follows: 

 

��� = �(�(�), �), �(0) = ��,
��(��) = Ф�

� .                (2) 

 
Here is the vector-function – � =

(�, �, �, �, ��, ��, ��, �), data – Ф�� = (��, ���, ��). 
The inverse problem was reduced to the problem 

of minimizing the objective functional in the form: 
 

�(�) = ∑ ∑ ��(��� �) −Ф�
� �������

���          (3) 
 

Due to the fact that the task of minimizing the 
objective functional is a multiparameter, then the 
determination of the global minimum requires the 
use of combined numerical methods – method of 
simulated annealing and gradient method.  

 
Methods 
 
Simulated annealing  – general algorithmic 

method for solving the global optimization problem, 
especially discrete and combinatorial optimization. 
Is the one examples of Monte Carlo methods. The 
algorithm is created by N. Metropolis and it is based 
on the imitation of the physical process that occurs 
during the crystallization of a substance, including 
during annealing of metals. It is assumed that atoms 
are already lined up in the crystal lattice, but 

transitions of individual atoms from one cell to 
another are still permissible. It is assumed that the 
process proceeds at a gradually decreasing 
temperature. The transition of an atom from one cell 
to another occurs with a certain probability, and the 
probability decreases with decreasing temperature. 
A stable crystal lattice corresponds to the minimum 
energy of the atoms, so the atom either enters a state 
with a lower energy level or remains in place.  

By simulating such a process, one finds a point 
or a set of points at which the minimum of some 
numerical function �(�)  is reached, where � =
(��, ��, … , ��) � �. The solution is figured out by 
sequential calculation of points ��, ��, …, in space �; 
each point, starting with ��, “pretends” to better the 
solution than the previous ones. Algorithm takes 
point �� as the raw data. At each step, the algorithm 
(which is described below) calculates a new point 
and lowers the value of the “temperature” value 
(initially positive). The algorithm stops when it 
reaches a point that turns out to be at a temperature 
of zero. 

According to the algorithm the point ����  is 
obtained on the basis of the current point ��  as 
follows. The � operator that randomly modifies the 
point is applied to point���, in result we obtain new 
point��∗. 

The point ��∗  becomes a point ����  with the 
probability �(�∗, ����) , which is calculated 
according to the Gibbs distribution: 

 
 

�(�∗ � ����|��) = �
�, �(�∗) − �(��) < 0

��� �−�(�
∗) − �(��)
�� � , �(�∗) − �(��) ≥ 0 

 
 
Here �� > 0 – elements of arbitrary decreasing, 

converging to zero positive sequence, which sets the 
analogue of the falling temperature in the crystal. 
The rate of decrease and the law of decrease can be 
set at the request of the creator of the algorithm. 

The simulated annealing algorithm is similar to a 
gradient descent, but due to the randomness of the 
choice of an intermediate point, it should fall into 
local minima less often than gradient descent. The 
simulated annealing algorithm does not guarantee 
finding the minimum of the function; however, with 
the correct policy of generating a random point in 
the space � , usually, the initial approximation 
improves. 

Gradient descent – method for finding a local 
extremum (minimum or maximum) of a function 
using motion along a gradient. To minimize the 
function in the direction of the gradient, one-
dimensional optimization methods are used, for 
example, the golden section method. You can also 
look for not the best point in the direction of the 
gradient, but some better than the current one. 

The easiest to implement of all local 
optimization methods. It has rather weak 
convergence conditions, but at the same time the 
rate of convergence is rather small (linear). The 
gradient method step is often used as part of other 
optimization methods. 
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The description of the method is as follows: let 
the objective function is �(�)� � � � . So the 
optimization problem is set as: 

 
�(�) � ������ �(��) 

 
In case when maximum is needed to be find, then 

instead of �(�) we use � �(�).  
The basic idea of method is to go in the direction 

of the fastest descent, and this direction is given by 
anti-gradient −�� 

 
���� = �� − ����(��) 

 
where �� set the velocity of gradient descent and can 
be chosen as 

 Constant (in this case method may diverge), 
 Decreasing in the process of gradient descent, 
 Guaranteeing the fastest descent: 
 To find minimum �(�) we obtain 
�� = ��������������

= ����������� − ����(��)� 
1. To find maximum �(�) we obtain 
�� = ��������������

= ����������� − ����(��)� 
And the algorithm of the gradient method is look 

as follows: 

1. Set the initial approximation and accuracy of 
the calculation – ��, �; 

2. Calculate ���� = �� − ����(��) , where �� =
����������� − ����(��)�; 

3. Then check the stopping condition: 
 If ����� − ��� � � , �������� − �(��)� � �  or 

���������� � �  (choose one of conditions), then 
� = � � 1 and go to step 2. 

 Otherwise � = ���� and end. 
The stochastic method of simulated annealing 

determines the region of the global minimum, and to 
determine the inverse problem in this region, the 
gradient method was used, consisting in the iterative 
sequence of determining the solution to the inverse 
problem: 

���� = �� − ���′(��), �� � �           (4) 
 
Here is the descent parameter �� = ��(��)

��′(��)� 
characterizes the method of steepest descent, the 
gradient of the objective functional �(��)  has the 
following form [10]:  

 
�′(��) = − � �(�)���(�(�), �)���

�        (5) 
 
Here the vector-function �(�) is the solution of 

the conjugate problem: 

 
 

�
� = −���(�(�), �)�(�),�  � � ⋃ ���, �����, �� = 0, ���� = �,����

�(�) = 0,
������� = ���(��� �) −Ф�� �, � = 1, � . , �.

                              (6)  

 
 
Jacobi matrices have the following form: 
 

�� = ����
���

�
�,���,������

, �� = ����
���

����,������,
���,������

         (7) 

Results 
 
The result of solving the inverse problem for a 

mathematical model of co-infection with 
tuberculosis and HIV using a combined method of 
simulating annealing with a gradient method is 
presented in Table 3 [13-14]. 

Thus, effective numerical algorithms for solving 
inverse problems for systems of ODE (for problems 
of epidemiology, pharmacokinetics and immune-
logy), based on a combination of stochastic and 
gradient methods, have been created. 

Table 3 – Solution of the inverse problem for the 
mathematical model of co-infection of tuberculosis and 
HIV 

 
Parameter Relative decision error q 

�� 1.0 ∗ 10��

�� 5.7 ∗ 10��

�� 5.3 ∗ 10��

� 4.1 ∗ 10���

 
Note that for each parameter, the relative error is 

less than 0.001%, and the parameters �� ��� �  are 
restored better than the others, as identifiability 
analysis showed. The result of solving the direct 
problem (1) with the found parameters is shown in 
Figure 1a-1c for the three measured functions. Red 
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dots describe statistical data that were not involved in 
solving the inverse problem, but are presented for 
comparison of the forecast using methods for solving 

inverse problems. It is shown that the obtained 
solution (solid line) is in good agreement with the 
real data and serves as a reliable forecast [15]. 

 
 

  

Figure 1a. – Numerical solution of the problem of the 
spread of co-infection of tuberculosis and HIV with 

specified parameters (solid line). Black dots mean data of 
the inverse problem, red dots – statistical data taken into 

account for the prediction. The number of individuals with 
active TB (without HIV). All values are in thousand. 

Figure 1b. – Numerical solution of the problem of the 
spread of co-infection of tuberculosis and HIV with 

specified parameters (solid line). Black dots mean data of 
the inverse problem, red dots – statistical data taken into 

account for the prediction. The number of individuals 
infected with HIV and the active form of TB. All values 

are in thousand. 
 

 

Figure 1c. – Numerical solution of the problem of the spread  
of co-infection of tuberculosis and HIV with specified parameters (solid line).  

Black dots mean data of the inverse problem, red dots –  
statistical data taken into account for the prediction.  

The number of individuals with AIDS. All values are in thousand. 
 
 
 

 
 
 
 



42 Determination of the coefficients of nonlinear ordinary differential equations systems using ...

Int. j. math. phys. (Online)International Journal of Mathematics and Physics 10, №1, 36 (2019)

Conclusion 
 
The research and analysis of the problem arising 

in bio-medicine has been carried out, the theoretical 
aspects of this task have been built, including 
identifiability analysis, which is an important step in 
the study of the mathematical model, and is 
necessary for the correct solution of the inverse 
problem, since it shows the uniqueness, existence 
and / or stability of the solution . 

New combined numerical algorithms for solving 
the direct and inverse problems of epidemiology 
have been built. Efficient numerical algorithms for 
solving inverse problems for systems of ODE (for 
problems of epidemiology, pharmacokinetics and 
immunology), based on a combination of statistical 
and gradient methods, have been created. 

Numerical algorithms for solving the problems 
of determining the coefficients of nonlinear ODE 
systems using additional statistical information were 
developed and analyzed. 

Thus, the conducted scientific work opens up 
new directions for the development of research in 
science and technology, namely, the refinement of 
mathematical models will improve the prognosis of 
the disease or the development of the epidemic, 
which would entail the need for a plan of measures 
for treating patients and eliminating the 
consequences of the disease / epidemic. 

 This work was supported by the grant of the 
Committee of Science of the Ministry of Education 
and Science of the Republic of Kazakhstan 
(AP05134121 "Numerical methods of identiability 
of inverse and ill-posed problems of natural 
science". 
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