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Mathematical problems of gravimetry and its applications 
 
 

Abstract. Gravimetry is associated with analysis of the gravitational field. The gravitational field is 
characterized by its potential. This is described by the Poisson equation, the right side of which includes 
the density of the environment. There exists direct and inverse problems of gravimetry. Direct gravimetry 
problems involve the determination of the potential of the gravitational field in a given region. The 
inverse problems of gravimetry imply the restoration of the structure of a given area from the results of 
measuring the characteristics of the gravitational field. Such studies are needed to assess on the basis of 
gravimetric geodynamic events occurring in oil and gas fields. The relevance of such research is 
necessary, because with prolonged development of the oil and gas fields, negative consequences may 
occur. This paper discusses some of the features of direct and inverse gravimetry problems. A description 
of the mathematical model of the processes under consideration is given. Different direct and inverse 
gravimetry problems are posed. Describes the methods of its solving. Based on the analysis of the results 
of a computer experiment, appropriate conclusions are made. 
Key words: gravimetry, inverse problems, mathematical model. 

 
 
Introduction 
 
Gravimetry is a science related to the study of 

gravitational fields. The gravitational field is 
potential, i.e. the work expended on movement in 
this field along a closed curve is zero. The main 
function characterizing a potential field is the 
potential. The potential of the gravitational field is 
described by the Poisson equation, the right-hand 
side of which includes the density distribution in a 
given region [1, 2]. 

Mathematical problems of gravimetry are 
divided into direct and inverse. Direct gravimetry 
problems involve finding the distribution of the 
potential of a gravitational field over a known 
density distribution in a given region. This is 
achieved by solving the corresponding boundary 
value problem for the Poisson equation. In the 
inverse problems of gravimetry, on the contrary, it 
is necessary to reconstruct the structure of the 
considered set by measuring the gravitational 
field. 

The relevance of the inverse problems of 
gravimetry is due to the fact that in the process of 
long-term operation of deposits of different minerals 
(in particular, oil and gas), significant changes occur 
that have undesirable consequences [3–5]. In this 
regard, monitoring of existing fields is regularly 
conducted. In this case, we are interested in 
gravimetric monitoring. With the help of 
gravimeters, measurement of the acceleration of 
gravity, corresponding to the gradient of the 
potential of the gravitational field, is carried out [6, 
7]. This experimental information can be used as a 
basis for the formulation of inverse problems of 
gravimetry. 

It is known that the inverse problems are ill-
posed, in principle [8]. However, the inverse 
problems of gravity are essentially ill-posed. In 
particular, the values of the acceleration of gravity 
determined during the measurement process may be 
due to various gravity anomalies. Thus, the solution 
of the inverse problem of gravimetry in the full 
formulation is not the only solution. Naturally, in 
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the numerical solution of such a problem, the 
algorithm outputs to one of these solutions. 
However, this result may not correspond to reality. 
Mathematically correct, it will have no practical 
meaning. In this connection, in practice, only partial 
inverse gravimetry problems are actually solved 
(see, for example, [9–18]). These works differ, 
firstly, in the volume of measured information, 
secondly, in the amount of identifiable information 
and, thirdly, in research methods. 

In this paper, we discuss some peculiar 
properties of the formulation of direct and inverse 
gravimetry problems based on the available 
experimental information, as well as methods for 
solving these problems. We characterize some of the 
difficulties encountered in solving direct and inverse 
gravimetry problems and discuss ways to overcome. 

 
Statement of the problem 
 
At first, give the general direct gravimetry 

problem (see, for example, [1,2]). The gravitational 
field in the given volume is described by the 
Poisson equation 

 
(x,y,z) = –4 G(x,y,z),               (1) 

 
where  is the gravitational potential,  is the 
density, G is the gravitational constant. 

It is necessary to add the boundary conditions. In 
principle, we can have some results of measuring on 
the ground surface. Unfortunately, we do not, as a 
rule, any information about the gravitational field 
underground. However, it is known that the 
influence of the object to the gravitational field 
decreases with distance from the object and tends to 
zero with unlimited distance from it. Then we can 
extend the given set such that the gravitational 
potential on the boundary of the extended set will be 
zero. Thus, the general direct gravimetry problem is 
finding the gravitational potential  = (x,y,z) from 
the homogeneous Dirichlet problem for the Poisson 
equation (1), using known density distribution  = 
(x,y,z). 

For formulating inverse problems of gravimetry, 
it is necessary to determine what specific 
information we can directly get into the process of 
gravimetric monitoring and what exactly we would 
like to find on the basis of this information. Note 
that when analyzing deposits, we have some 
territory S in the x, y plane. The terrain in this area is 
known. In addition, the maximum depth that is of 
interest to the research is usually specified. It is 

natural to choose it as a reference, i.e. the zero value 
of the vertical coordinate z. Then we can assume 
that the given function is h = h(x, y), which 
characterizes the height of the terrain at the point x, 
y of the surface S with respect to the chosen system. 
Thus, the system is considered in three-dimensional 
volume 

 
V = {(x,y,z) | 0 < z < h(x,y), (x,y)S}. 

 
In practice, using gravimeters, the gravitational 

acceleration is measured, which, up to a sign, 
coincides with the vertical derivative of the potential 
of the gravitational field. Thus, the following 
condition holds 

                      
 , , ( , )

( , ),  ( , ) ,
x y h x y

g x y x y S
z


  


   (2) 

 
where g is the experimentally measured value of the 
gravitational acceleration. This information, which 
is the result of gravimetric monitoring, can be used 
as the basis for the formulation of inverse 
gravimetry problems. 

The purpose of the gravimetric monitoring of the 
existing field is largely to clarify the geological and 
tectonic structure and geological field information 
of the study area in order to highlight the risk of 
geodynamic processes. Such information can be 
obtained by knowing the density distribution in a 
given region. Thus, the object of the search in the 
process of solving the inverse problem of 
gravimetry is the density function, which is in the 
right-hand side of the considered equation (1). 
Therefore, the general gravimetry problem is finding 
the density distribution  = (x,y,z) in the volume V 
such that the solution of the homogeneous Dirichlet 
problem for the Poisson equation (1) in the extended 
set satisfies the additional condition (2). 

As is known, the most natural way to solve 
inverse is to reduce them to optimization problems. 
In particular, the stated inverse problem can be 
reduced to the problem of minimizing the functional 

                                        

  2
, , ( , )

( ) ( , ) ,
S

x y h x y
I I g x y dS

z



 

    
 (3) 

 
where  is a solution of the considered direct 
problem corresponding to the given function . 
Naturally, the solution of the inverse problem also 
turns out to be the solution of the optimization 
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the numerical solution of such a problem, the 
algorithm outputs to one of these solutions. 
However, this result may not correspond to reality. 
Mathematically correct, it will have no practical 
meaning. In this connection, in practice, only partial 
inverse gravimetry problems are actually solved 
(see, for example, [9–18]). These works differ, 
firstly, in the volume of measured information, 
secondly, in the amount of identifiable information 
and, thirdly, in research methods. 

In this paper, we discuss some peculiar 
properties of the formulation of direct and inverse 
gravimetry problems based on the available 
experimental information, as well as methods for 
solving these problems. We characterize some of the 
difficulties encountered in solving direct and inverse 
gravimetry problems and discuss ways to overcome. 

 
Statement of the problem 
 
At first, give the general direct gravimetry 

problem (see, for example, [1,2]). The gravitational 
field in the given volume is described by the 
Poisson equation 

 
(x,y,z) = –4 G(x,y,z),               (1) 

 
where  is the gravitational potential,  is the 
density, G is the gravitational constant. 

It is necessary to add the boundary conditions. In 
principle, we can have some results of measuring on 
the ground surface. Unfortunately, we do not, as a 
rule, any information about the gravitational field 
underground. However, it is known that the 
influence of the object to the gravitational field 
decreases with distance from the object and tends to 
zero with unlimited distance from it. Then we can 
extend the given set such that the gravitational 
potential on the boundary of the extended set will be 
zero. Thus, the general direct gravimetry problem is 
finding the gravitational potential  = (x,y,z) from 
the homogeneous Dirichlet problem for the Poisson 
equation (1), using known density distribution  = 
(x,y,z). 

For formulating inverse problems of gravimetry, 
it is necessary to determine what specific 
information we can directly get into the process of 
gravimetric monitoring and what exactly we would 
like to find on the basis of this information. Note 
that when analyzing deposits, we have some 
territory S in the x, y plane. The terrain in this area is 
known. In addition, the maximum depth that is of 
interest to the research is usually specified. It is 

natural to choose it as a reference, i.e. the zero value 
of the vertical coordinate z. Then we can assume 
that the given function is h = h(x, y), which 
characterizes the height of the terrain at the point x, 
y of the surface S with respect to the chosen system. 
Thus, the system is considered in three-dimensional 
volume 

 
V = {(x,y,z) | 0 < z < h(x,y), (x,y)S}. 

 
In practice, using gravimeters, the gravitational 

acceleration is measured, which, up to a sign, 
coincides with the vertical derivative of the potential 
of the gravitational field. Thus, the following 
condition holds 
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where g is the experimentally measured value of the 
gravitational acceleration. This information, which 
is the result of gravimetric monitoring, can be used 
as the basis for the formulation of inverse 
gravimetry problems. 

The purpose of the gravimetric monitoring of the 
existing field is largely to clarify the geological and 
tectonic structure and geological field information 
of the study area in order to highlight the risk of 
geodynamic processes. Such information can be 
obtained by knowing the density distribution in a 
given region. Thus, the object of the search in the 
process of solving the inverse problem of 
gravimetry is the density function, which is in the 
right-hand side of the considered equation (1). 
Therefore, the general gravimetry problem is finding 
the density distribution  = (x,y,z) in the volume V 
such that the solution of the homogeneous Dirichlet 
problem for the Poisson equation (1) in the extended 
set satisfies the additional condition (2). 

As is known, the most natural way to solve 
inverse is to reduce them to optimization problems. 
In particular, the stated inverse problem can be 
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where  is a solution of the considered direct 
problem corresponding to the given function . 
Naturally, the solution of the inverse problem also 
turns out to be the solution of the optimization 

problem, and the solution of the optimization 
problem under the condition of its existence will be 
the solution of this inverse problem. The practical 
solution of the obtained optimization problem is 
carried out using numerical optimization methods, 
for example, the gradient method [19–21]. 

Note that in reality the measurement of the 
gravitational acceleration is carried out not 
everywhere in a given area S, but only at certain 
points (xi,yi), i = 1,2,…,M, where gravimeters are 
located. Thus, in fact, instead of (2), we have the 
condition                      

 , , ( , )
,  1,...,i i i i

i
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g i M

z


  


    (4) 

with known values gi. Thus, in practice, either by 
interpolation, the transition to condition (2) is 
performed, followed by minimization of the 
functional (3), or we solve the minimization 
problem for the functional. 
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Results and discussion 
 
For simplicity, we perform the analysis for the 

two-dimensional case, considering the horizontal 
coordinate x and the vertical coordinate z. For the 
direct problem in the simplest case, we consider a 
rectangular area in which the gravitational anomaly 
is located, i.e. an object significantly different in 
density from the environment. Figure 1 shows the 
density distribution over a given area, as well as the 
calculated distribution of the gravitational potential 
and its derivative in the upper part of the region 
corresponding to the earth's surface if the anomaly is 
located in the center of the considered set (Figure 
1a) and near its boundary (Figure 1b). 

 
 

 

 

 
a) anomaly is in the center          b) anomaly is near the boundary 

 
Figure 1 – Density distribution, potential, and its vertical derivative  

for the case of rectangular anomaly 
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As can be seen from Figure 1a, at the location of 
the anomaly (point x), the potential and its vertical 
derivative have their maximum value. As one moves 
away from the anomaly, these values decreases to 
zero equally in both directions, which is the 
corollary to zero boundary conditions. However, 
when the anomaly is located near the boundary of 
the region under consideration (Figure 1b), the 
potential distribution and its derivative are no longer 
symmetrical, which is not satisfactory. The results 
suggest that, in order to eliminate the influence of 
the boundaries, the area under consideration should 
be significantly extended. 

At the next stage of the study, we are already 
repelling ourselves from the geological and 
lithographic section of the real field. Figure 2 
depicts the density distribution in the considered 
area, with the yellow color indicating the area filled 
with clay – the predominant environmental material 
and relatively high density, blue – the air that inside 
the field corresponds to the existing voids with 
significantly lower density, and green – oil, more 
lighter than clay, but heavier than air. When 
extending a given area, it is assumed that air is 
located above the surface of the earth, and clay is 
located outside the initial area.  

 

 

 
Figure 2 – Density distribution, potential, and its vertical derivative  

for the extended set with real parameters and usial density outside the initial set 
 
 
As can be seen from the results obtained, the 

potential on the surface of the earth over the zone of 
predominance of oil and voids is lower compared to 
the neighboring zones where clay is predominant. 
This is due to the fact that the clay has a greater 
density. In this case, the vertical derivative of the 
potential is negative, since as the distance from the 
object increases, the potential value decreases, and 
the larger, the larger the potential value itself. We 
draw attention to the fact that outside the initial 
region, the potential value turns out to be rather 
large and decreases sharply to zero in the vicinity of 

the boundaries. This is explained by the fact that 
there is heavy clay outside the initial region, and 
zero potential values are rigidly set at the boundary. 
Besides, the potential derivative greatly increases in 
the neighborhood of the boundaries. Such a result 
cannot be considered satisfactory, and suggests that 
the density in the extended part of the region should 
be continued to zero. Indeed, we consider the 
gravitational field created by objects located in a 
given area. 

At the next stage of the analysis, we carried 
out calculations with the extension of the set so 
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that the density outside the initial region is 
assumed to be zero. In this case, the distribution 
of the potential gradually decreases to zero as the 

boundaries approach. The value of the vertical 
derivative potential also tends to zero, see 
Figure 3. 

Figure 3 – Density distribution and vertical derivative of the potential 
for the extended set with real parameters and usial density outside the initial set 

The question arises, how we can determine the 
size of the extended set. First, some extension is 
selected, and the value of the derivative potential on 
the earth's surface in the given region is calculated. 
Then the area extends again and calculations are 
carried out. If the newly found value of the 
derivative potential practically does not differ from 
that found earlier, then the calculations are 
terminated. Otherwise, a new extension is carried 
out. 

Now consider the inverse problem. At first, we 
try to solve the general inverse problem for the two-
dimensional case. We determine the gravitational 
anomaly as the square with a higher density than the 

density of the environment (see Figure 4a). Then we 
solve the Poisson equation with given boundary 
condition and calculate the vertical derivative of the 
potential at the ground surface. Now we put the 
result to the minimizing functional and solve the 
minimization problems by means of the gradient 
method. The iterative method converged, and the 
sequence of functional tends to zero. Thus, we 
found the solution of the optimization problem that 
is the solution of inverse problem too. The obtained 
result is shown in the Figure 4b). Unfortunately, this 
result is significantly different from the real. This is 
the corollary of the non-uniqueness of the 
considered inverse problem. 

a) real position b) obtained position

Figure 4 – Position of the gravitational anomaly of the inverse problem 
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Its is clear that the general inverse problem of 

gravimetry is not very interesting because of its 
significantly non-uniqueness. We had a few data 
(boundary value of potential derivative) for finding 
the many information (density as a function of 
spatial variables). Then we consider two partial 
cases. For the first case, we suppose that we know 
the position of the homogeneous anomaly, its form 
and size, but its density is unknown. For the second 
case, we consider inverse situation. The density of 
the anomaly with given form and size is known, and 
its position is unknown. The first problem was be 
solved by gradient methods [19–21] with good 
enough exactness. The second (geometric) inverse 
problem has the peculiarity. The minimizing 
functional is not Gateaux differentiable. It is 
subdifferentiable only. Then we use the methods of 
non-smooth optimization, particularly, the 
subgradient method [22], the Nelder – Mead method 
[23], and genetic algorithms [24]. The exactness of 
the results was be good enough too. This is clear, 
because for both partial inverse problems, we 
determine one (constant density) or two (coordinates 
of the anomaly) parameters, using the knowledge of 
the function (vertical derivative of the potential at 
the ground surface).   

  
Conclusion 
 
Based on the obtained results, the following 

conclusions can be drawn: 
1. The direct problem of gravimetry is based on 

the Poisson equation with respect to the potential of 
the gravitational field with a density included in the 
right-hand side of the equation. 

2. To find the potential distribution in a given 
region, the given region should be extended by 
setting uniform Dirichlet boundary conditions on the 
extended set. 

3. The density value outside the source region is 
assumed to be zero. 

4. Experimentally measured the acceleration of 
gravity, which corresponds to the vertical derivative 
of the gravitational potential. 

5. The method of choosing the size of the 
extended set is proposed.   

6. The general inverse problem of gravimetry is 
to find the density distribution in a given area, using 
the measure of the potential derivative on the outer 
surface. 

7. The general inverse problem of gravimetry has 
essentially not the only solution, as a result of which 
the value of the density distribution found using 
standard optimization methods may differ from its 
real value. 

8. Some particular inverse problems of 
gravimetry have been solved, in particular, the 
restoration of constant density and coordinates of 
the location of the gravitational anomaly. 

9. Optimization problems corresponding to 
inverse gravimetry can be characterized by a non-
differentiable functional. In this case, non-smooth 
optimization methods can be used, in particular, the 
subgradient method, the Nelder – Mead method, and 
genetic algorithms. 

10. The obtained results can be used in 
monitoring oil and gas fields. 
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