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An inverse problem for the pseudo-parabolic equation 
for Laplace operator 

Abstract. A class of inverse problems for restoring the right-hand side of the pseudo-parabolic equation 
for 1D Laplace operator is considered. The inverse problem is to be well-posed in the sense of Hadamard 
whenever an overdetermination condition of the nal temperature is given. Mathematical statements 
involve inverse problems for the pseudo-parabolic equation in which, solving the equation, we have to 
find the unknown right-hand side depending only on the space variable. We prove the existence and 
uniqueness of the classical solutions. The proof of the existence and uniqueness results of the solutions is 
carried out by using L-Fourier analysis. The mentioned results are presented as well as for the fractional 
time pseudo–parabolic equation. Inverse problems of identifying the coefficients of right hand side of the 
pseudo-parabolic equation from the local overdetermination condition have important applications in 
various areas of applied science and engineering, also such problems can be modeled using common 
homogeneous left-invariant hypoelliptic operators on common graded Lie groups. 
Key words: Pseudo-parabolic equation, 1D Laplace operator, fractional Caputo derivative, 
inverse problem, well-posedness. 

Introduction 

In this paper we study inverse problem for the 
time-fractional pseudo-parabolic equation for one 
dimensional Laplace operator. We consider 
following equation 

���[�(�, �) − ���(�, �)] − ���(�, �) = �(�),   (1) 

for (�, �) � Ω = �(�, �)�� � � � � � ∞, � � � �
�� , where ���  is the Caputo derivative which is 
defined in the next section. The operator − ��

���
which is participating in the equation(1) is the well 
known 1D Laplace operator and we will denote it 
further by ℒ. We know the second order differential 
operator in ��(�, �)  generated by the differential 
expression 

ℒ�(�) = −���(�), � � (�, �)   (2) 

and boundary conditions 

�(�) = �, �(�) = �,    (3) 

is self-adjoint in ��(�, �). The problem (2)-(3) has 
the following eigenvalues 

�� = ���� �
�
, � � �, 

and the corresponding system of eigenfunctions 

��(�) = �2� sin
��
� (�), � � �� 

It is known that the self-adjoint problem has real 
eigenvalues and their eigenfunctions form a 
complete orthonormal basis in ��(�, �). 

The study of inverse problems for pseudo 
parabolic equations began in the 1980s. The first 
result obtained by Rundell  [2]  refers to the inverse 
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identification problems for an unknown sourse 
function � in a following equation 

 
�
�� [�(�, �) � ℒ�(�, �)] � ℒ�(�, �) = �.    (4) 

 
Where ℒ  is even order linear differential 

operator. Rundell proved global existence and 
uniqueness theorems for cases when � depends only 
� or only �. In a series of articles [6], [7], [8], [9], 
[10], [12], [13], [14], [15],[16],[17] some recent 
work has been done on inverse problems and spectral 
problems for the diffusion and anomalous diffusion 
equations. 

 
Definitions of fractional operators 
 
We begin this paper with a brief introduction of 

several concepts that are important for the further 
studies. 

Definition 1. [5] The Riemann-Liouville 
fractional integral I�  of order α > 0  for an 
integrable function is defined by 

 

��[�](�) = 1
Γ(�)�

�

�
(� � �)����(�)��, � ∈ [�, �], 

 
where Γ denotes the Euler gamma function. 

 
Definition 2. [5] The Riemann-Liouville 

fractional derivative D�  of order α ∈ (0,1)  of a 
continuous function is defined by 

 

��[�](�) = �
�� �

�[�](�), � ∈ [�, �]. 
 
Definition 3. [5] The Caputo fractional 

derivative of order 0 < α < 1  of a differentiable 
function is defined by 

 
�∗�[�](�) = ��[�′(�)], � ∈ [�, �]. 

 
Definition 4.[5] (Caputo derivative). Let � ∈

��[�, �], �∞ � � < � < � � �∞and � ∗ ����(�) ∈
��,�[�, �],� = [�], � > 0.The Caputo fractional  
 
 

derivative���� of order� ∈ � (� � 1 < � < �,� ∈
ℕ) is defined as 

���� �(�) = 

= ���� ��(�) � �(�)

� �′(�) (� � �)
1! �. . . ��(���)(�) (� � �)���

(� � 1)! �. 
 
If � ∈ ��[�, �]  then, the Caputo fractional 

derivative ����  of order � ∈ �  ( � � 1 < � <
�,� ∈ ℕ) is defined as 

 
���� [�](�) = �������(�)(�) = 

= 1
Γ(� � �)�

�

�
(� � �)������(�)(�)��. 

 
Formulation of the problem 
 
Problem 1.We aim to find a couple of functions 

(u(t, x), f(x)) satisfying the equation(1), under the 
conditions 

�(0, �) = �(�), � ∈ [0, �]          (5) 
 

�(�, �) = �(�), � ∈ [0, �].          (6) 
 

and the homogeneous Dirichlet boundary conditions 
 

�(�, 0) = �(�, �) = 0, � ∈ [0, �].       (7) 
 
By using ℒ–Fourier analysis we obtain existence 

and uniqueness results for this problem. 
We say a solution of Problem 1 is a pair of 

functions (�(�, �), �(�)) such that they satisfy 
equation(1) and conditions(5)-(7) where �(�, �) ∈
��([0, �]� ��([0, �])) and �(�) ∈ �([0, �]). 

 
Main results 
 
For Problem 3.1, the following theorem holds.  
Theorem 1.Assume that�(�), �(�) ∈ ���[0, �]. 

Then the solution �(�, �) ∈ ���[0, �], ��([0, �])�,
�(�) ∈ �([0, �]) of the Problem 3.1 exists, is unique, 
and can be written in the form 
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�(�, �) = ��(�) +�
∞

���

���(�) − ��(�)��1 − ��,� �−
���� �

�

������ �
� ����

���� �
� �1 − ��,� �−

���� �
�

������ �
� ����

sin ��� (�),
 

   (8) 
 

�(�) = −�′′(�) + ∑∞���
��
(�)���

(�)

����,���
���� �

�

������ �
����

sin ��� (�),                            (9) 

 
 

where ��(�) = (�′′, ��)��(�,�), ��(�) = (�′′, ��)��(�,�) 
and ��,�(��) is the Mittag-Leffler type function (see 
[4]): 

 

��,�(�) = �
∞

���

��
Γ(�� + �). 

 
First of all, we start by proving an existence 

result. 
Proof. Let us seek functions �(�, �) and �(�) 

in the forms: 
 

�(�, �) = ∑∞��� ��(�)sin ��
� (�), � � �,     

(10) 
and 

 
�(�) = ∑∞��� ��sin ��� (�), � � �,      (11) 

 
where ��(�)  and ��  are unknown. Substituting 
Equations (10) and (11) into Equation (1), we obtain 
the following equation for the functions ��(�) and 
the constants ��: 

 

�����(�) +
���� �

�

1 + ���� �
� ��(�) =

��
1 + ���� �

�. 

 
Solving these equation,we obtain 
 

��(�) =
��

���� �
� + ����,� �−

���� �
�

1 + ���� �
� ���, 

 

where the constants ��  and ��  are unknown. To 
find these constants, we use conditions(5), (6). Let 
�� and �� be the coefficients of the expansions of 
�(�) and �(�): 

�� = �2� �
�

�
�(�)sin ��� (�)��, � � �,

�� = �2� �
�

�
�(�)sin ��� (�)��, � � �.

 

 
We first find ��: 
 

��(0) =
��

���� �
� + �� = ��,

��(�) =
��

���� �
� + ����,� �−

���� �
�

1 + ���� �
� ��� = ��.

 

 
Then 
 

�� =
��� − ���

1 − ��,� �−
���� �

�

������ �
� ���

.
 

 
The constant �� is represented as 
 

�� = �� �
��
� �

�
− �� �

��
� �

�
. 

 
Substituting ��(�) and ��  into expansion (10), 

we find  
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�(�, �) = �(�) + ∑∞��� �� ���,� �−
���� �

�

������ �
� ��� − �� sin ��

� (�).                      (12) 

 
By the supposition of the theorem we know 
 

�(�)(�) = �, �(�)(�) = �, � = �,�,�,
�(�)(�) = �, �(�)(�) = �, � = �,�,�. 

then using they we have 
 

�� =
�� − ��

� − ��,� �−
���� �

�

������ �
� ���

= − ��(�) − ��(�)

���� �
� �� − ��,� �−

���� �
�

������ �
� ����

.
 

 
Putting this into equations (10) and (11) we obtain 

�(�, �) = ��(�) + ∑∞���
���

(�)���
(�)������,���

���� �
�

������ �
�����

���� �
�
�����,���

���� �
�

������ �
�����

sin ��
� (�).

                    (13) 

Similarly, 
 

�(�) = −�′′(�) + ∑∞���
��
(�)���

(�)

����,���
���� �

�

������ �
����

sin ��
� (�).                           (14) 

 
 
The following Mittag-Leffler function’s estimate 

is known by [11]: 
 

���,�(�)� � �
����� , ���(�) = �, ��� � ∞.     

(15) 
 

Now, we show that �(�, �) �
��(��, ��� ��(��, ��)), �(�) � �(��, ��), that is 

� � ���(��,�����(��,��))= max����,��
� �(�,�) ���(��,��)+ max����,��
� ����(�,�) ���(��,��)< ∞, 

 
and 

� � ��(��,��)< ∞. 
 
By using (15), we get following estimates 

 
 

��(�, �)� � ��(�)� + ∑∞���
���

(�)�����
(�)�

���� �
�
�����,���

���� �
�

������ �
�����

� ��(�)� + ∑∞���
���

(�)�����
(�)�

���� �
� ,

                               (16) 
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������ � ��′′���� + ∑∞���
���

��������
����

����,���
���� �

�

������ �
����

� ��′′���� + ∑∞��� ������� + ������� .
                                (17) 

 
 
Where, � � �  $L denotes � � C�  for some 

positive constant C independent of � and �. 
By supposition of the theorem we know ���� 

and ���� are continuous on ��, ��.  
 
Then by the Bessel inequality for the 

trigonometric series (see [1]) and by the Weierstrass 
M-test (see [3]), series (16) and (17) converge 
absolutely and uniformly in the region Ω. Now we 
show. 

������, ��� � ��′′���� +�
∞

���

������� + �������

1 � ��,� ��
���� �

�

������ �
� ���

� ��′′���� +�
∞

���
������� + ������� < ∞,

 

 

�������, ��� � �
∞

���

������� + �������

�1 + ���� �
���1 � ��,� ��

���� �
�

������ �
� ����

� �
∞

���

������� + �������
1 + ���� �

� < ∞,

 

 

���������, ��� � �
∞

���

���� �
� �������� + ��������

�1 + ���� �
���1 � ��,� ��

���� �
�

������ �
� ����

� �
∞

���
������� + ������� +�

∞

���

������� + �������
1 + ���� �

� < ∞.

 

 
 
Finally, we obtain 
 
� � ������,��,����,���� � < ∞, � � �����, 

and 
� � �����,���< ∞. 

 
Existence of the solution is proved. 

Now, we start proving uniqness of the 
solution.Let us suppose that �����, ��, ������  and 
�����, ��, ������ are solution of the Problem 1. Then 
���, �� � ����, �� � ����, ��  and ���� � ����� �
����� are solution of following problem: 

 
�������, �� � �����, ��� � �����, �� � ����,   (18) 
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                (19) 
 

              (20) 
 

By using (13) and (14) for (18)-(20) we easily see 
. Uniqness of the solution of 

the Problem 1.  
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