
© 2019 al-Farabi Kazakh National University   

International Journal of Mathematics and Physics 10, №1, 11 (2019)

Int. j. math. phys. (Online)

 
 
 
 
 
 
 
 

IRSTI 27.31.15 
 

1,*S. Aisagaliev, 1Zh. Zhunussova, 2H. Akca 
 

1Al-Farabi Kazakh National University, Almaty, Kazakhstan 
*e-mail: Serikbai.Aisagaliev@kaznu.kz,  

2Professor of Applied Mathematics, Abu-Dhabi University, Abu-Dhabi, UAE  
e-mail: Haydar.Akca@adu.ac.ae 

 

Construction of a solution for optimal control problem  
with phase and integral constraints 

 
 

Abstract. A method for solving the Lagrange problem with phase restrictions for processes described by 
ordinary differential equations without involvement of the Lagrange principle is supposed. Necessary and 
sufficient conditions for existence of a solution of the variation problem are obtained, feasible control is 
found and optimal solution is constructed by narrowing the field of feasible controls. The basis of the 
proposed method for solving the variation problem is an immersion principle. The essence of the 
immersion principle is that the original variation problem with the boundary conditions with phase and 
integral constraints is replaced by equivalent optimal control problem with a free right end of the 
trajectory. This approach is made possible by finding the general solution of a class of Fredholm integral 
equations of the first order. The scientific novelty of the results is that: there is no need to introduce 
additional variables in the form of Lagrange multipliers; proof of the existence of a saddle point of the 
Lagrange functional; the existence and construction of a solution to the Lagrange problem are solved 
together.  
Key words: immersion principle, feasible control, integral equations, optimal control, optimal solution, 
minimizing sequence.  

 
 
Introduction 
 
One of the methods for solving the variational 

calculus problem is the Lagrange principle. The 
Lagrange principle makes it possible to reduce the 
solution of the original problem to the search for the 
extremum of the Lagrange functional obtained by 
introducing auxiliary variables (Lagrange 
multipliers). 

The Lagrange principle is the statement about the 
existence of Lagrange multipliers, satisfying a set of 
conditions when the original problem has a weak 
local minimum. The Lagrange principle gives the 
necessary condition for a weak local minimum and 
it does not exclude the existence of other methods 
for solving variational calculus problems unrelated 
to the Lagrange functional. 

The Lagrange principle is devoted to the works 
[1-3]. A unified approach to different extremum 

problems based on the Lagrange principle is 
described in [4]. 

In the classical variational calculus, it is assumed 
that the solution of the differential equation  belongs 
to the space С1(I,Rn), and the control ),(tu  It  is 
from the space С1(I,Rm), in optimal control problems 
[5] the solution ),,()( 1 nRIKCtx   and the control 

).,()( mRIKCtu   In this work, the control ),(tu  
It  is chosen from L2(I,Rm) and the solution ),(tx  
It  is an absolutely continuous function on the 

interval ].,[= 10 ttI  For this case solvability and 
uniqueness of the initial problem for differential 
equation are given in [4, 6-8]. 

The purpose of this work is to create a method 
for solving the variational calculus problem for the 
processes described by ordinary differential 
equations with phase and integral constraints that 
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differ from the known methods based on the 
Lagrange principle. It is a continuation of the 
research outlined [9-10]. 

 
Problem statement  
 
We consider the following problem: minimize 

the functional       
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at conditions  
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where the control  
 

).,()( 2
mRILu                       (1.6) 

 
Here ),(tA  )(tB  are matrices with piecewise-

continuous elements of orders ,nn   ,rn   
respectively, a vector function 

)),,(,),,,((=),,( 1 tuxftuxftuxf r  is 

continuous with respect to the variables 
,),,( IRRtux mn   satisfies the Lipschitz 

condition by x, i.e. 
 

IRRtuytux
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and the condition 
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where 0,)( tl  ),,()( 1

1 RILtl   0,>=0 constc  

0,)(1 tc  ).,()( 1
11 RILtc   

The vector function 
)),(,),,((=),( 1 txFtxFtxF s  is continuous with 

respect to the variables .),( IRtx n   Function 
),,,,,((=),,,,( 1001100 txxuxftxxuxf  

)),,,,(, 1020 txxuxf m  satisfies the condition 
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).,()(0,)(0,= 1

1332 RILtctcconstc   
 
Scalar function ),,,,( 100 txxuxF  is defined and 

continuous with respect to the variables together 
with partial derivatives by variables ),,,,( 10 xxux  

),(t  ),(t  It – are given s– dimensional 
functions. S is given bounded convex closed set of 

,2nR  the time moments  10,tt  are fixed. 
In particular, the set  

0,),(/),{(= 10
2

10  xxHRxxS j
n  ;1,= 1pj  

0,>=),(,< 10 xxa j  },1,= 21 ppj   where

),,( 10 xxH j  11,= pj  are convex functions,

,2n
j Ra   21 1,= ppj   are given vectors.  
Note, that if the conditions (1.7), (1.8) are 

satisfied for any control ),()( 2
mRILu   and the 

initial condition 00 =)( xtx  of the differential 
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equation (1.2) has a unique solution. ),(tx  .It  
This solution has derivative ),(2

nRILx  and 
satisfies equation (1.2) for almost all .It  

It should be noted that integral constraints 
 

1

0 1 0 0 1

0

1

( ( ), , ) = ( ( ), ( ), , , ) 0,

= 1, ,

t

j j
t

g u x x f x t u t x x t dt

j m

   (1.9) 

 
by introducing additional variables 0,jd  

,1,= 1mj  can be written in the form 
 

.1,=,=),),(( 110 mjdxxug jj   
 
Let the vector be 

,,0),0,0,,,(= 2
11

m
m Rddc    where 0,jd  

.1,= 1mj  Let a set be

},1,=0,/{= 1
2 mjdRcQ j

m   where 0,jd  

11,= mj  are unknown numbers. 
Definition 1.1. The triple 

10
*
1

*
0* ),),(( SSUxxtu   is called by admissible 

control for the problem (1.1) – (1.6), if the boundary 
problem (1.2) – (1.6) has a solution. A set of all 
admissible controls is denote by ,  

.10 SSU    
From this definition it follows that for each 

element of the set Σ the following properties are 
satisfied: 1) the solutions ),(* tx  It  of the 
differential equation (1.2), issuing from the point 

,0
*
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*
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also ;=),( 10
*
1

*
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The following problems are set:  
Problem 1.2. Find the necessary and sufficient 

conditions for the existence of a solution of the 
boundary value problem (1.2) – (1.6).  

Note, that the optimal control problem (1.1) – 
(1.6) has a solution if and only if the boundary value 
problem (1.2) – (1.6) has a solution.  

Problem 1.3. Find an admissible control 
* *

* 0 1 0 1( ( ), , ) .u t x x U S S     
If problem 1.2. has a solution, then there exists 

an admissible control.  
Problem 1.4. Find the optimal control 

** ( ) ( ),u t U t  the point ,(
*
0x  SSSx =) 10

*
1   

and the optimal trajectory 
*
0* 0( ; , ),x t t x  ,It  

where *( ) ( ),x t G t  ,It  
*
1* 1 1( ) = ,x t x S  

* *
0 1*( ( ), , ) 0,jg u x x   ,1,= 1mj  

* *
0 1*( ( ), , ) =0,jg u x x  
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* *
0 1*( ( ), , )J u x x ),,),((inf= 10 xxuJ   

.),(),),(( 10210 SSRILxxu m    
One of the methods for solving the problem of 

variation calculus is the Lagrange principle. The 
Lagrange principle allows to reduce the solution of 
the original problem to the search for an extremum 
of the Lagrange functional obtained by introducing 
auxiliary variables (Lagrange multipliers). 

 In the classical variation calculus, it is assumed 
that the solution of the differential equation (1.2) 
belongs to the space ����� ��) and the control u(t), t 
∈ I of the space ���� ��) in the optimal control 
problems [5], the solution x ∈ KC1(I, Rn) and control 
u(t) ∈ KC1(I, Rm). In this paper, the control u(t), t ∈ I 
is chosen from L2(I, ��), and the solution x(t), t ∈ I 
is an absolutely continuous function on the interval I 
= [t0, t1]. For this case, the existence and uniqueness 
of the solutions of the initial problem for equation 
(1.2) are presented in the references [4, 6, 7, 8].  

The purpose of this paper is to create a method 
for solving the problem of the variation calculus for 
processes described by ordinary differential 
equations with phase and integral constraints that 
differ from the known methods based on the 
Lagrange principle. It is a continuation of the 
scientific research presented in [9-16]. 

 
Existence of a solution  
We consider the following optimal control 

problem: minimize the functional 
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Lemma 2.1. Let the matrix be positive definite 
0>),( 10 ttT . In order to the boundary value 

problem (1.2) – (1.6) have a solution, it is necessary 
and sufficient that 0=)(inf==)(lim 1*11 


III

X
n

n 
, 

where Xn )}({  is a minimizing sequence in the 
problem (2.1) – (2.4). 

Proof of the lemma follows from Theorem 2.3. 
and Lemmas 2.4. and 2.5. [9].  

Theorem 2.2. Let the matrix be 0>),( 10 ttT , the 

function  ),(1 tqF  be defined and continuous in the 
set of variables ),( tq  together with the partial 
derivatives with respect to q  and satisfies the 
Lipschitz conditions  
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In addition, the gradient )(1 I  , X  satisfies 

the Lipschitz condition 
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where 0>= constK .  
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system (2.2), (2.3). Let
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Then  
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The increment of the functional (see (2.5)) 
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where 0>= constli , 10,15=i . This implies the 

estimation (2.8), where 15= lK . The theorem is 
proved. 

Lemma 2.3. Let the matrix be 0>),( 10 ttT , the 

function ),(1 tqF  be convex, with respect to the 
variable NRq , 14= mrsmnN  , i.e.  
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   
(2.12) 

 
Then the functional (2.1) under the conditions 

(2.2) – (2.4) is convex. 
Proof. Let X21, , [0,1] . It can be 

shown, that 
 

1 21 2

1 21 2

( , (1 ) , (1 ) ) =
( , , ) (1 ) ( , , ),

z t v v v v
z t v v z t v v

   
 

   

  
 

 
).,(),(),,( 2

22121
mrRILvvvv   

Then  
1

1 1 2 1 1

0

2 1 1 1 2

( (1 ) ) = ( ( )

(1 ) ( )) ( ) (1 ) ( ),

t

t
I F q t

q t dt I I

   

    

  

    

  

 
1 2 1 1 1 1 2 0 1

1 1 2 0 12 1

, , = ( , , , , , , ),
= ( , , , , , , ).
X u p v v x x d

u p v v x x d
  


 

 

 
The lemma is proved.  
The initial optimal control problem (2.1) – (2.4) 

can be solved by numerical methods for solving 
extremal problems [9,10]. We introduce the 
following sets },||||)/,()({= 2  uRILuU m  

 
},||||/),()({=),( 1211  vRILvRIV rr  

 
}),||||),()({=),( 2

2
22

2
2  vRILvRIV mm /  

 
},||0,/{= 1

1  ddRd m  
 

0>  is a sufficiently large number. We 
construct sequences 

11021 },,,,,,{=}{ Xdxxvvpu n
nnnn

nnn  , 
0,1,2,=n  by the algorithm 

1 1 1 1

1 1
1 1 1 2 2 11 1 2 2

1 1
0 0 1 1 1 10 0 1 1

1 11

0

= [ ( )], = [ ( )],

= [ ( )], = [ ( )],

= [ ( )], = [ ( )],

= [ ( )], = 0,1, 2, ,

20 <
2

n U n n u n n V n n p n

n n n n
V n v n V n v n

n n n n
S n x n S n x n

n n n d n

n

u P u I p P p I

v P v I v P v I

x P x I x P x I

d P d I n

K

   

   

   

 

 

 

 

 

 

  

  

  



 




, > 0,


 

(2.13) 
 
where ][P  is the projection of the point on the set 
 , 0>= constK  from  (2.8). 

Theorem 2.4. Let the conditions of Theorem 2.2. 
be satisfied, in addition, the function ),(1 tqF  be 
convex with respect to the variable NRq   and the 
sequence 1}{ Xn   be determined by formula 
(2.13). Then:  

1) the lower bound of the functional (2.1) is 
reached under the conditions (2.2) – (2.4) 

 
;),(min=)(=)(inf 1*1

1
*11

1

XIII
XX







 

 
2) the sequence 1}{ Xn   is minimizing 

)(inf==)(lim 1
1

*11 


III
X

n
n 

; 

3) the sequence 1}{ Xn   weakly converges to 

the point 1* X , *,nu u  *np p , 
*

1 1
nv v , *

2 2
nv v , *

00 xx n  , *
11 xxn  , 

*ddn   at n , where ,,,,(= *
2

*
1*** vvpu  

1*
*
1

*
0 ),, Xdxx  ; 

4) in order to the problem (1.2) – (1.6) have a 
solution, it is necessary and sufficient that 

0==)(lim *11 II n
n




; 

5) the following estimation of the rate of 
convergence holds 

 
0

1 1*

0

0 ( ) , = 1,2, ,

= > 0.
n

CI I n
n

C const

         (2.14) 

 
Proof. Since the function ),(1 tqF , It  is 

convex, it follows from Lemma 3.3. that the 
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functional )(1 I , 1X  is convex on a weekly 
bicompact set 1X . Consequently, )()( 1

1
1 XCI   

is weakly lower semicontinuous on a weakly 
bicompact set and reaches the lower bound on 1X . 
This implies the first statement of the theorem.  

Using the properties of the projection of a point 
on a convex closed set 1X  and taking into account 
that  )()( 1

1,1
1 XCI   it can be shown that

2
1111 ||||)()(   nnnn II  , 0,1,2,=n , 

0> . It follows that: 1) the numerical sequence 
)}({ 1 nI   strictly decreases; 2) 0|||| 1  nn   at 

n . 
Since the functional is convex and the set 1X  is 

bounded, the inequality holds 
 

1 1 1 1*

1

0 ( ) ( ) || ||,
= > 0, = 0,1,2, .

n n nI I C
C const n
       


     (2.15) 

 
Hence, taking into account that 

0|||| 1  nn   at n ,, we have: the 
sequence }{ n  is minimizing. 

)(inf=)(=)(lim 1
1

*11 


III
X

n
n 

. 

Since 1}{ Xn  , 1X  is weakly bicompact, that,  

*
weakly

n   at n . 
As it follows from Lemma 3.1., if the value

0=)( *1 I , then the problem of optimal control 
(1.1) – (1.6) has a solution.  

The estimation (2.14) follows directly from the 
inequalities (2.15),  

2
1111 ||||)()(   nnnn II  . 

We briefly outlined above, the main steps in 
proof of the theorem. Detailed proof of an 
analogous theorem is given in [16]. The theorem is 
proved.  

For the case when the function ),(1 tqF  is not 
convex with respect to the variable ,q  the following 
theorem is true. 

Theorem 2.5. It is supposed, that the conditions 
of Theorem 2.2. are satisfied, the sequence 

1}{ Xn   is determined by formula (2.13). Then: 
1) the value of the functional )(1 nI   strictly 
decreases for 0,1,2,=n ; 2) 0|||| 1  nn   at 

n .  

Proof of the theorem follows from Theorem 2.4. 
From the results it follows that 1) if 

1*
*
1

*
0

*
2

*
1*** ),,,,,,(= Xdxxvvpu   is the solution of 

optimal control problem (2.1) – (2.4),  
for which 0=)( *1 I , then 

10
*
1

*
0** ),),(=( SSUxxtuu   is admissible 

control; 2) the function ),;( *
00* xttx , It is the 

solution of differential equation (1.2), satisfies the 
conditions:  *

1
*
001 =),;( xxttx , )(),;( *

00* tGxttx  , 

It , the functionals 0),),(( *
1

*
0*  xxug j , 

11,= mj , 0=),),(( *
1

*
0* xxug j  , 21 1,= mmj  ; 3) 

the necessary and sufficient condition for the 
existence of a solution of the boundary value 
problem (1.2) – (1.6) is 0=)( *1 I  where 1* X  
is the solution of problem (2.1) – (2.4); 4) for the 
admissible control, the value of the functional (1.1) 
equals to  

* *
* 0 1

1
* *

0 * * 0 1 *

0

( ( ), , ) =

( ( ), ( ), , , ) = ,
t

t

J u x x

F x t u t x x t dt 



 
 (2.16) 

where ),;(=)( *
00** xttxtx , It . In the general 

case, the value  
* ** *

* 0 1* 0 1( ( ), , ) ( , , ) =J u x x J u x x   

0 1inf ( ( ), , ),J u x x  
.),(),),(( 10210 SSRILxxu m   

 
Construction of an optimal solution  
 
We consider the optimal control problem (1.1) – 

(1.6). We define a scalar function )(t , It  as:  

.,),,),(),((=)( 100

0

ItdxxuxFt
t

t

   

 
Then ),,),(),((=)( 100 txxtutxFt , 0=)( 0t , 

,),),((==)( 101  xxuIt   /{ 1R   

0 0 0 1 0, }, inf ( ( ), , ) ,where I u x x          
 the value 0  is bounded from below, in particular 

0 = 0, if 0F  0. 
Now the problem of optimal control (1.1) – (1.6) 

can be written in the form (see (2.1)) 
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inf),),((==)( 101  xxuIt            (3.1) 
 

at conditions 
 

0 0 1

0 1

( ) = ( ( ), ( ), , , ),
( ) = 0, ( ) = ,

t F x t u t x x t
t t


  


               (3.2) 

 
0 0

1 1 0 1

= ( ) ( ) ( , , ), ( ( ) = ,
( ) = ) ,

x A t x B t f x u t x t x
x t x S S


 


        (3.3) 

 
0 0 1

0 1

= ( ( ), ( ), , , ),
( ) = 0, ( ) = ,

f x t u t x x t
t t c Q


  


                (3.4) 

 
.),,()(),()( 2 ItRILutGtx m            (3.5) 

 
We introduce the notations 

 

1,1 1, 1, 2

,2 ,1 2

, ,,1 2 2 22

0 ,1

,12

( )
( ) = ( ) ,

( )

( ) = ( ) ,

1
= ,

n m

n mn

m n m mm

n

m

t
t x t

t

O O O

A t O A t O
O O O

B O
O






 
 
 
 
 

 
 
 
 
 
 

 
 
 
  
 

 

 

   

1, 21,

0 0 , 2

,2 2

0 1, 1, 1 ,1 ,2 2

( ) = ( ) , ( ) = ,

= 1, , , = , , ,

mr

n m

m r m

n m n n n m

OO
C t B t D t O

O I

P O O P O I O

     
  
  
    

 

 
where )(=)( 110 ttP  , xP =1 . 

Then the optimal control problem (3.1) – (3.5) 
has the form:  

            
,inf),),((==)( 1010  xxuItP      (3.6) 

 
at conditions   

 
2 0 0 1 0 1

0 1 0 0 1 0 1

= ( ) ( , , , , )

( ) ( , , ) ( , , , , ),

A t B F P u x x t

C t f P u t D f P u x x t

  

 

 

 



 (3.7) 

 
0

0 0 0

0

1,1

0 1,1 0 ,1 02

,12

( )
( ) = = ( ) =

( )

= ,m

m

t
t x t

t

O
x O S O T

O


 



 
 
 
 
 

 
 
 
  
 

   

          (3.8) 

 
1

1 1 1

1

1 1 1

( )
( ) = = ( ) =

( )

= ,

t
t x t

t

x S Q T
c


 





 
 
 
 
 

 
 
 
 
 

  

                 (3.9) 

 
,),,()(),()( 21  dRILutGtP m   (3.10) 

 
where ),(=)( 1 tPtx   ),(=)( 0 tPt   ,It    is 
determined by formula (3.6). 

The immersion principle. We consider the 
boundary value problem (3.7) – (3.10). The 
corresponding linear controlled system has the form  

 
1 22 0 0

30

= ( ) ( ) ( ) ( )
( ), ,

A t B w t C t w t
D w t t I

    

 


     (3.11) 

 
1

1 22 2

23 2

( ) ( , ), ( ) ( , ),

( ) ( , ),

r

m

w L I R w L I R
w L I R

   

 
    (3.12) 

 
.=)(,=)( 111000 TtTt        (3.13) 

 
We introduce the following notations:  
 

0 0 0 0
1

1 2 3

( ) = ( , ( ), ), ( ) =
( ( ), ( ), ( )), ( , ) = ( ) ( ),

B t B C t D w t
w t w t w t t K t K  

 

0 1 1 0 0 1

1 * *
0 00 0

0

= ( , ) , ( , ) =

( , ) ( ) ( ) ( , ) ,
t

t

a t t R t t

t t B t B t t t dt

  

  
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* *
0 00 0 0

0

0 1 0 1

( , ) = ( , ) ( ) ( ) ( , ) ,

( , ) = ( , ) ( , ),

t

t
R t t t B B t d

R t t R t t R t t

     



  
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1
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t
t
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1
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=
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0
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0


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
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




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







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


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





tK
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ttttRttD
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1

2 0 1 0 1 0 1 0
1

0 0 0 1 0 1 1

( , , ) = ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , ) ,

t t t R t t R t t
t t R t t R t t t t
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





  

 
 

 
.),,(),(),(),(=)( 1010

1
002 ItttttRttRtttK    

 
Theorem 3.1. Let the matrix be .0>),( 10 ttR  

Then the control 
),())(),(),((=)( 21

2321
mrRILtwtwtwtw   

transforms the trajectory of the system (3.11) – 
(3.13) from any initial point 21

0
mnR   to any 

given finite state 21
1

mnR   if and only if  
1

1 1 1 12

111 0 1 11 1

( ) = { ( ) ( , ) / ( ) =
( ) ( , , ) ( ) ( , ),

w t W w L I R w t
v t t K t z t v 
  

   
 

 
},),,()( 1

21 ItRILv               (3.14) 
 

2 2 2( ) 22

122 0 1 12 1

( ) = { ( , ) / ( ) =
( ) ( , , ) ( ) ( , ),

rw t W w L I R w t
v t t K t z t v 

 

   
 

 
},),,()( 22 ItRILv r               (3.15) 

23 3 3 32

133 0 1 13 1

( ) = { ( ) ( , ) / ( ) =
( ) ( , , ) ( ) ( , ),

mw t W w L I R w t
v t t K t z t v 
  

   
 

 
},),,()( 2

23 ItRILv m            (3.16) 

where  
Itvtztztvtvtvtv ),,(=)()),(),(),((=)( 321  is 

the solution of the differential equation 
 

 
1 22 0 0

30 0

= ( ) ( ) ( ) ( )

( ), ( ) = 0,

z A t z B v t C t v t

D v t z t

  




  (3.17) 

 
1

1 22 2

23 2

( ) ( , ), ( ) ( , ),

( ) ( , ).

r

m

v L I R v L I R
v L I R

   

 
       (3.18) 

 
Solution of the system (3.11) – (3.13) has the 

form 
 

2 0 1

2 1

( ) = ( , ) ( , , )
( ) ( , ), .

t z t v t
K t z t v t I

    

 
    (3.19) 

 
The proof of the analogous theorem is presented 

in the work [10].  
Lemma 3.2. Let the matrix be 0>),( 10 ttR . Then 

the boundary value problem (3.7) – (3.10) is 
equivalent to the following problem  

 
1 1 1 0 1 0 1( ) , ( ) = ( , , , , ),

,
w t W w t F P u x x t

t I



 (3.20) 

 
,),,,(=)(,)( 1222 IttuPftwWtw     (3.21) 

 
3 3 3 0 1 0 1( ) , ( ) = ( , , , , ),

,
w t W w t f P u x x t

t I



 (3.22) 

 
2

1

( ) ( ) = { ( ) ( , ) / ( ) =
( , ), ( ) ( ) ( ), },

sp t V t p L I R p t
F P t t p t t t I  
  

   
  (3.23) 

 

1 22 0 0

30 0

= ( ) ( ) ( ) ( )

( ), ( ) = 0, ,

z A t z B v t C t v t

D v t z t t I

  

 


 (3.24) 

 
1

1 22 2

23 2

( ) ( , ), ( ) ( , ),

( ) ( , ),

r

m

v L I R v L I R

v L I R

   
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  (3.25) 

 
0 1 0 1 2( , ) , ( ) ( , ),

, ,

mx x S S u L I R
d

   
 

       (3.26) 

 
where ),(t  It  is determined by formula (3.19), 

),( vtz  is the solution of system (3.17), (3.18).  
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We consider the following optimal control 
problem: minimize the functional  

 
1

2 0 1 2

0

1
2

1 0 1 0 1

0

( , , , , , , ) = ( ( ), ) =

[| ( ) ( ( ), ( ), , , ) |

t

t

t

t

J v u p x x d F q t t dt

w t F P t u t x x t



  




2

2 1

2
3 0 1 0 1

| ( ) ( ( ), ( ), ) |

| ( ) ( ( ), ( ), , , ) |

w t f P t u t t
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under the conditions (3.24) – (3.26), where 
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Note, that the optimization problem (3.27), 

(3.24) – (3.26) is obtained on the basis of relations 
(3.20) – (3.23).  
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Then:  
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where ),(t  It  is the solution of the adjoint 
system 
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2. gradient XJ   ),(2  satisfies the 

Lipchitz condition 
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The proof of the analogous theorem can be found 
in the work [16]. We construct the following 
sequences ,,,,,{=}{ 321 nn

nnn
n puvvv

210 },,, Xdxx nn
nn   by the algorithm 
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sufficiently large number. 
Theorem 3.4. Let the conditions of Theorem 3.3. 

be satisfied  1X  is a bounded convex closed set, the 
sequence 2}{ Xn   is determined by the formula 
(3.29). Then:  

1. the numerical sequence )}({ 2 nJ   is strictly 
decreasing 0|||| 1  nn  , at n . 

If, in addition,, ),(2 tqF  is a convex function with 
respect to a variable q , then:  

2.  the lower bound of the functional (3.27) is 
obtained under the conditions (3.24) – (3.26) 
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Proof of the analogous theorem is given above.  
A more obvious method for solving problem 

(1.1) – (1.6) is the method of narrowing the domain 
of admissible controls. 

Theorem 3.5. Let the conditions of Theorem 3.3. 
be satisfied,  

3 1 2 3 0 1=X V V V U V S S        be a 
bounded convex closed set, the sequence  

2}{ Xn   be defined by (3.28) with the exception 
of the sequence  .}{ n  Then:  

    1.  the numerical sequence )},({ 2 nJ   

3}{ Xn   is strictly decreasing;  
    2.  0|||| 1  nn   at ,n  ;}{ 3Xn   
If, in addition, the function ),(2 tqF  is convex 

with respect to a variable q  for fixed ,  then:  
    3.  the sequence ,}{ 3Xn   for a fixed 
 =  is minimizing;  

    4.  3*n X    at ,n  ;=  
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    6.  the following estimation holds 
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The proof of the analogous theorem is presented 
in the work [10] for a fixed ,  .=  

Let the solution of the problem be 2* X  
(3.27), (3.24) – (3.26) with *=   . There are 
the possible cases:   

    1.  the value 0;>)( *2 J   
    2.  the value  0=)( *2 J . 

Note, that 0,)(2 J  .3X  
If  0>)( *2 J , then a new value of   is 

selected as *= 2  , and if 0=)( *2 J , then a new 

value *=
2
 . According to this scheme, by 

dividing the uncertainty segment in half, the 
smallest value of the functional (1.1), under the 
conditions (1.2) – (1.6) can be found. 

 
Conclusion  
 
The Lagrange problem of the variation calculus 

is investigated in the presence of phase and integral 

constraints for processes described by ordinary 
differential equations. The particular cases of which 
are the simplest problem, the Bolz problem, the 
isoperimetric problem, the conditional extremum 
problem.  

In contrast to the well-known method for solving 
the problem of the variation calculus on the basis of 
the Lagrange principle, an entirely new approach an 
"immersion principle" is proposed. The immersion 
principle is based on the investigation of the 
Fredholm integral equation of the first kind. For the 
Fredholm integral equation of the first kind, the 
existence theorem for the solution as well as the 
theorem on its general solution are proved. 

 The main scientific results are:  
- reduction of the boundary value problem 

connected to the conditions in the Lagrange problem 
to the initial optimal control problem with a specific 
functional;  

- necessary and sufficient conditions for the 
existence of the admissible control;  

- method of constructing an admissible control 
on the limit point of the minimizing sequence;  

- necessary and sufficient conditions for the 
existence of a solution of the Lagrange problem;  

- method for constructing the solution of the 
Lagrange problem.  
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