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Construction of a solution for optimal control problem
with phase and integral constraints

Abstract. A method for solving the Lagrange problem with phase restrictions for processes described by
ordinary differential equations without involvement of the Lagrange principle is supposed. Necessary and
sufficient conditions for existence of a solution of the variation problem are obtained, feasible control is
found and optimal solution is constructed by narrowing the field of feasible controls. The basis of the
proposed method for solving the variation problem is an immersion principle. The essence of the
immersion principle is that the original variation problem with the boundary conditions with phase and
integral constraints is replaced by equivalent optimal control problem with a free right end of the
trajectory. This approach is made possible by finding the general solution of a class of Fredholm integral
equations of the first order. The scientific novelty of the results is that: there is no need to introduce
additional variables in the form of Lagrange multipliers; proof of the existence of a saddle point of the
Lagrange functional; the existence and construction of a solution to the Lagrange problem are solved
together.
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minimizing sequence.

Introduction

One of the methods for solving the variational
calculus problem is the Lagrange principle. The
Lagrange principle makes it possible to reduce the
solution of the original problem to the search for the
extremum of the Lagrange functional obtained by
introducing  auxiliary  variables  (Lagrange
multipliers).

The Lagrange principle is the statement about the
existence of Lagrange multipliers, satisfying a set of
conditions when the original problem has a weak
local minimum. The Lagrange principle gives the
necessary condition for a weak local minimum and
it does not exclude the existence of other methods
for solving variational calculus problems unrelated
to the Lagrange functional.

The Lagrange principle is devoted to the works
[1-3]. A unified approach to different extremum
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problems based on the Lagrange principle is
described in [4].

In the classical variational calculus, it is assumed
that the solution of the differential equation belongs
to the space C'(L,R"), and the control u(¢), tel is

from the space C'(1,R™), in optimal control problems
[5] the solution x(¢) € KC'(I,R"), and the control

u(t)e KC(I,R™). In this work, the control wu(?),
t € I is chosen from Ly(Z,R™) and the solution x(z),
tel is an absolutely continuous function on the
interval [ =[¢,,%]. For this case solvability and

uniqueness of the initial problem for differential
equation are given in [4, 6-8].

The purpose of this work is to create a method
for solving the variational calculus problem for the
processes described by ordinary differential
equations with phase and integral constraints that
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12 Construction of a solution for optimal control problem with phase and integral constraints

differ from the known methods based on the
Lagrange principle. It is a continuation of the
research outlined [9-10].

Problem statement

We consider the following problem: minimize
the functional

J (), %0, %) =

=_‘I‘Fo(x(f),u(l),xo,xl,t)dt_>inf (1.1)

fo
at conditions
x=At)x+B(t)f(x,u,t), tel=[t,t] (1.2)
with boundary conditions
(x(2,)) = x0,x(t,)=x,) €Sy xS, =S < R*" (1.3)
in the presence of phase constraints

xt)eG@):G(t)=
={xeR"/o(t)<O(x,t)<P(t), tel},

and integral constraints

gj(u(')’x()axl) S 09

J=Tm g, (u().x,x,) =0, (1.4)
Jj=m+1m,,
g (u(), X, %)=
‘
= jl‘foj (x(@),u(t), x,,x,,t)dt, (1.5)
i
0 j=1,m,.
where the control
u(-ye L,(1,R"). (1.6)

Here A(¢), B(t) are matrices with piecewise-

continuous eclements of orders nxr,

respectively, a vector function

S (xu,t)=(f,(x,u,t),..., f.(x,u,t)) is

nxn,
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continuous with respect to the variables

(x,u,t) e R" xR" x 1,
condition by x, i.e.

satisfies the Lipschitz

|fu,t) = f(ru, ) <L) [ x =y,

(1.7)
V(x,u,t),(y,u,t) € R" xR" x 1
and the condition
|fEunle(xl+uP)+a®, g

v(x’u’t)7

where [(¢)>0, [(t)eL/(I,R"), c,=const>0,
¢ ()=0, ¢(t)eL,(I,R").

The vector function
F(x,t)=(F(x,1),...,F.(x,t)) is continuous with
respect to the variables (x,f) € R" xI. Function
fo(xauaxoaxl at) = (fOI (xauaxoaxpt)a-'-

...,f()m2 (x,u,x,,x,,t)) satisfies the condition

| foCru,xg,x, ) [S ey ([ x [+ u P+ [+ x )+
+c3(t)7

V(x,u,x,,%,t),(y,u,x,,%,t) € R" x
XR"xR"xR"x 1,

¢, =const 20, ¢,(1)=0, c;(t)e L,(I,R").

Scalar function Fj(x,u,x,,x,,t) is defined and
continuous with respect to the variables together
with partial derivatives by variables (x,u,x,,X,),
a(t), @),

functions. S is given bounded convex closed set of

tel— are given s— dimensional

R?", the time moments £,,7, are fixed.

In particular, the set
S={(xo,xl)eRZ”/Hj(xo,xl)SO, J=Lp;
<a;,(xy,x)>=0, j=p +1,p,}, where
H (xy,x,), Jj=1,p, —are convex functions,

a; e R*, j=p,+1,p, are given vectors.

Note, that if the conditions (1.7), (1.8) are
satisfied for any controlu(-) € L,(/,R™) and the
initial condition x(z,)=x, of the differential
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equation (1.2) has a unique solution. x(¢), te[.

This solution has derivative xe€ L,(/,R") and

satisfies equation (1.2) for almost all ¢ € 1.
It should be noted that integral constraints

g; (u(-)sx0,x) = jﬁ)j (x(®),u(t),xy,x,,0)dt <0,

,0 (1.9)
J=1Lm,

by introducing additional variables d; >0,

j =1,m,, can be written in the form

gj(u(')ax()axl):_dja jzla

Let the vector be
c=(-d,,....~d,0,0,...0) e R™, whered, >0,
j=1,m,. Let a set be

O={ce R2/d >0, j= lm}, where d, >0,

j =1,m, are unknown numbers.

Definition 1.1. The triple
(u.(1), x,,x,) €U x S, x S, is called by admissible
control for the problem (1.1) — (1.6), if the boundary
problem (1.2) — (1.6) has a solution. A set of all
admissible  controls is  denote by X,
2cUxS§,xS,.

From this definition it follows that for each
element of the set ¥ the following properties are
1) the solutions X.(f), tel of the
differential equation (1.2), issuing from the point

satisfied:

X, €S, satisfy the condition x,(¢)=x, €S, and
(x,,% ) €S, xS, =8; 2) the
x.(t)eG(t), tel holds;

the set ¥ we have the equality g(u(-), x,,x,) = c,

also inclusion

3) for each element of

where
g(u*(')ax;axl*) = (gl (u*('),X;,X;),.., 5
ng (u*(')axgaxl*))‘

The following problems are set:

Problem 1.2. Find the necessary and sufficient
conditions for the existence of a solution of the
boundary value problem (1.2) — (1.6).
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Note, that the optimal control problem (1.1) —
(1.6) has a solution if and only if the boundary value
problem (1.2) — (1.6) has a solution.

Problem 1.3. Find an admissible control

(u.(1),x,,x, ) eZcUxS,x8,.
If problem 1.2. has a

an admissible control.
Problem 1.4. Find the

u,(t)eU(t), the point (X0, ;T) €Sy xS, =8

solution, then there exists

optimal  control

—_— p— 1
and the optimal trajectory x*(t;to,XQ), tel,

tel, x.(t)=x1€S,

(u()XOX1)<O j= lm], (M()XOXI) 0,

where x_*(l‘) e G(1),

—_—% —k

J=m A Lmy, J@(),xo,x1) = inf J (u(-), xo,x1),

V(u(-), x0,x1) € L,(I,R")xS,xS,.

One of the methods for solving the problem of
variation calculus is the Lagrange principle. The
Lagrange principle allows to reduce the solution of
the original problem to the search for an extremum
of the Lagrange functional obtained by introducing
auxiliary variables (Lagrange multipliers).

In the classical variation calculus, it is assumed
that the solution of the differential equation (1.2)
belongs to the space C1(I, R™) and the control u(?), t
€ I of the space C(I,R™) in the optimal control
problems [5], the solution x € KC'(I, R") and control
u(t) € KC'(1, R™). In this paper, the control u(t), t €1
is chosen from L.(I, R™), and the solution x(2), t €1
is an absolutely continuous function on the interval /
= [ty, t;]. For this case, the existence and uniqueness
of the solutions of the initial problem for equation
(1.2) are presented in the references [4, 6, 7, §].

The purpose of this paper is to create a method
for solving the problem of the variation calculus for
processes described by ordinary differential
equations with phase and integral constraints that
differ from the known methods based on the
Lagrange principle. It is a continuation of the
scientific research presented in [9-16].

Existence of a solution
We consider the following optimal control
problem: minimize the functional

L), PO (v, (), X, %, d) =

= Il F(q(0),t) = inf 2.1)

Y
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14 Construction of a solution for optimal control problem with phase and integral constraints

2= A4z + B (O (D) + By, (1), 2(,) = 0,

2.2
tel @2)
vl(') € L2(1>Rr)> Vz(') € L2(1>1am2 )a (23)
p(t)e V(t)ﬂu(')eLZ(Ian)a (24)
(xy,%)€SyxS, =8,deTl.

We introduce the following notations:
H=L,(I,R")xL,(I,R*)x L,(I,R")x
xL,(I,R™)x R" x R" x R ’

X = L (LR XV < LI, RT)x , vector function

xL,(I,R"™)x S, xS, xT c H
0(1) = (u(0), p(1),v, (1), v, (1), %y, x,d) e X c H,
q(1) = (2(9),z(¢),0(2)).

The optimization problem (2.3) — (2.6) can be
represented in the form:

1,(6() = jFl(q(t),t) —>inf,0()e X Cc H.
Let the soet be
X.={0.()e X |[,(6.()= grel)t;ll(@('))}-

Lemma 2.1. Let the matrix be positive definite
T(t,,t,)>0. In order to the boundary value

problem (1.2) — (1.6) have a solution, it is necessary
and sufficient thatlim!,(6,)= 1. =inf1,(8)=0,
OeX

n—0

where {0, (-)} < X is a minimizing sequence in the

problem (2.1) — (2.4).
Proof of the lemma follows from Theorem 2.3.
and Lemmas 2.4. and 2.5. [9].

Theorem 2.2. Let the matrix be T(t,,t,) >0, the

function F(q,t) be defined and continuous in the

set of variables (q,t) together with the partial
derivatives with respect to q and satisfies the
Lipschitz conditions

|Eq(q+Aqaz)_Eq(q:t) |SZ|A6] |at617 (25)

where

Fv]q (qat) = (Ez(q,l),Ez(tl)(q,f),Eu (q’t)aF‘lp (qat)a
Evl (qzl‘)aFvlv2 (q,t), EXO (q,t), Exl (q,t), Ed (qat))a
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n+m n+m
q:(Zaz(tl)’usp9vlsv2ax0ax]9d)eR ZXR 2)(

XR"XR*XR"xXR™ xR"xR"xR™

Aq = (AZ, AZ(tl)’ Aua Apa Avla szaAXO’ Axla Ad) ’
[ =const>0.
Then the functional (2.1) under the conditions

(2.2) — (2.4) is continuously Frechet differentiable,
1,(0) = (11,(0).1/,(6). 1), (). I, (6),

lu

the gradient , , ,
1, (0.1}, (0).1},(0) € H

any point @ € X is calculated by the formula

11,(0) = F,(q(1),0), I{,(8) = K, (q(1).0), I}, (8) =

=, (q(),0)— B/ (0w (1),

I, (@) =F, (9(0).0-By @), I, (6) = [F, (4(),0)dt,

1L, 0)= [F, ()0, 1},(0) = [F, (q(0),0)dt,
0 ' (2.6)

where z(f), t €I is the solution of the differential

equation (2.2), and the functiony/(¢), t el is the
solution of the conjugate system

¥ =F.(q(0),0)— 4 (O, w(4)=

1 2.7
= —[F (g0, @D

In addition, the gradient1/(0), 6 € X satisfies
the Lipschitz condition

|| 11'(01)_11'(02)||SK"61_02 ||,V01, (2.8)
0, eX, ’
where K =const>0.

Proof. Let 0(7),0(t)+AO(t) e X, z(t,v,v,),
z(t,v, +Av,,v, +Av,), t eI be a solution of the
system (2.2), (2.3). Let
z(t, v, + Av, v, + Av,) = z(8, v, v,) + Az(F), tel.
Then
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|Az(D) S C [ Av, [+C, [[Av, || 2.9) 1 o
Ry [<1, [ |Az(4) [ Aq(®)|dt by the Lipschitz
The increment of the functional (see (2.5)) fo

condition (2.5). We note that (see (2.7), (2.9))
Al =1,(0+A0)-1,(0)=

= j[Fl (q(t)+ Aq(t),1) - F,(q(2),0)ldt = IAZ* () F () (q(0),t)dt =
% ‘o
= jl[Au*(t)Fm (@(O),0)+Ap" (O)F,, (q(0),0)+ =—[[AY (OB () + AV, (OB W (Dde - (2.11)
I )

AV (OF,, (q(0.0)+ faz' (0, (g0t

+Av, (1)F, 1),0)+Ax F 1),0)+
208, (GO0 + AxFiy, (9(0).1) From (2.10) and (2.11) we get

+Ax B, (q(t),t)+Ad"F, (q(t),0)+ - *
| AL, = [{8u' (OF, (q(0.0)+Bp (O, (q(0).0)+
fo

+AzZ (DF, (q(0),0)+Az" (6)F, , (q(),D]dt + +AV (O[F, (q(0),0)= B (Op ()] +
R, +AV; (O[F,, (q(0),0) = By ()]+
= (2.10)
tl +Ax;Fix0 (q(t)’ t)+ A'XI*EJCI (q(t)’t)+
where IR <1, j | Au(t) || Aq(t) | dt, .
f +Ad"F,(q(1),0)}dt + Y R, =<1I/(6),A0 >, +R,
4 i=1
Ry IS 1, [ | 8p(0) | Aq(2) | dt, 9 R
:0 where R=D R, |RIKC,|AG", m—m,
1 i=1
| Ry [< L[ | Av,(0) [| Aq(0) | dt, at | AG > 0.
o This implies the relation (2.6). Let
Ul
Ry <1, [ 1Av,(0) || Aq(o) |, 6, = (u+Au, p+Ap, v, + Av,,v, +
fo

b

gl +Av,, X, + Ax,,x, + Ax,,d + Ad)
Ry 1< L[ | Ax, || Ag(2) | dt,

0 92:(uﬂpavlovzyxogxl,d)EX.SinCC
4

| Ry [< I [ | Ax, | Aq(2) |,
‘o

gl
| Aq(?) I< 15 [|AG [ Ay (r) [< 1, || AO ),
R, K| |Ad || Agq(2) | dt,
Ry L[ 1Ad || Aq(0)| -

| 11(6) — I](0,) P< Ly | Aq(0) [ +1, [Ap () [ +1,, |AG T,

0

| 1 6)-118,) =
| Ry [< [ | A1) || Aq(2) |,

)

Ul
= [150)- 1[0, di <1 || AP,

‘o

Int. j. math. phys. (Online) International Journal of Mathematics and Physics 10, Nel, 11 (2019)



16 Construction of a solution for optimal control problem with phase and integral constraints

where [, =const>0, i=10,15. This implies the
estimation (2.8), where K = \/Z . The theorem is
proved.

Lemma 2.3. Let the matrix be T(t,,t,)>0, the
function F(q,t) be convex, with respect to the
variable g€ R", N=4n+m+s+r+m,, iec.

Fl(ag +(1-a)q,) S ak(q,,0)+(1-a)F(q,,?),
Vq,q, e RV Va,ae[0,1].
2.12)

Then the functional (2.1) under the conditions
(2.2) — (2.4) is convex.

Proof. Let 6,0, X, a<[0,1]. It can be
shown, that

z(t,av, + (1—a)vi,av, + (1—a)v2) =

= az(t,v,v,)+ (1-a)z(t,v1,v2),

Y (v, v,), (vi,v2) e L,(I,R"™).
Then

[i(ab +(1-a)b,) = jl‘Fl(aql(t)+
X

+(1-a)g,()d < al,(0)+ (1- )1, (6,),

V6.0, e X,0 = (u, V5, %,X,d),

6, = (u1, p,,v1,v2,x0,x1,d).

The lemma is proved.

The initial optimal control problem (2.1) — (2.4)
can be solved by numerical methods for solving
extremal problems [9,10]. We introduce the

following sets U = {u(:) € L,({,R")/ ||u ||< S},
MR = () e L(LR)/|v, [ B3,
Vo(IL,R™) = {v,() e L(I,R™) I || v, |£ B}),
I[={deR"/d>0,|d|<pB},

£ >0 is a sufficiently large number. We
construct sequences

{9;1} = {un7pnavlnavg7xgaxlnﬂdn} c Xl >
n=0,1,2.... by the algorithm
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u,, =bu, - an]l,u @)1 P =Elp, - anll'p @)1,
VI}H—1 = PV1 [v]" - anll,vl (en )]5 V;’-H = f’V2 [v; - an Il'vz (0” )]’

=B [ —a, Il (6)). 5" = P, [+ ~a, I, (6,)],

dn+1 = f}l [dn _anll'd(on)]’ n= 051529~'-5

0<g <a, < e>0,

K+2¢&’
(2.13)

where F,[] is the projection of the point on the set
Q, K=const>0 from (2.8).

Theorem 2.4. Let the conditions of Theorem 2.2.
be satisfied, in addition, the function F(q,t) be
convex with respect to the variable q € R" and the
sequence {0} — X, be determined by formula

(2.13). Then:
1) the lower bound of the functional (2.1) is
reached under the conditions (2.2) — (2.4)

inf ]1(9) = ]1(9*) = minll(e), 0. X
06X1 HeXl

2) the sequence {6,}c X,
lim/,(6,) =1, = inf 1,(0) ;
6?EX1

n—0

is minimizing

3) the sequence {6, } — X, weakly converges to

the point @eXl, U, —>U., p,—> D

* * *
Vi ——V,, V,——V,, xl > x,, X X,
* *
d —d. at n— o, whereb, =(u.,p.v,v,,
* *
Xo, X, ,d) € X,;

4) in order to the problem (1.2) — (1.6) have a
solution, it is necessary and sufficient that

lim/,(6,)=1.=0;

n—»0
5) the following estimation of the rate of
convergence holds

C
< -1,<=2 n=
O_Il(an) Il*_ n >N 1927“'7 (214)

C, = const > 0.

Proof. Since the function F(q,t), tel is

convex, it follows from Lemma 3.3. that the
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functional /,(0), €€ X, is convex on a weekly
bicompact set X,. Consequently, /,(8) e C'(X))
is weakly lower semicontinuous on a weakly
bicompact set and reaches the lower bound on X .

This implies the first statement of the theorem.
Using the properties of the projection of a point

on a convex closed set X and taking into account
that 1,(6) e C"'(X,) it can be shown that
LO)-1,(0,.)2¢6,-06,, ", n=0,12,..,
&> 0. It follows that: 1) the numerical sequence
{1,(6,)} strictly decreases; 2) ||, =6, ., ||l 0 at
n— .

Since the functional is convex and the set X, is
bounded, the inequality holds

OS 11(011)_11(0*) < Cl || en _0n+1 ||9

2.15
C, =const>0,n=0,1,2,.... ( )

account that
we have: the

Hence, taking into
Ne,-6,.|I>0 at n—oo,

0} is
lim/,(68,) = 1,(6.) = inf 1,(0).
HEXI

n—»0

sequence minimizing.

Since{0,} — X,, X, is weakly bicompact, that,
o ﬂk!y—) O, at n > .

As it follows from Lemma 3.1., if the value
1,(6.)=0, then the problem of optimal control

(1.1) — (1.6) has a solution.

The estimation (2.14) follows directly from the
inequalities (2.15),

L(6,)-1,(0,.,)2¢6,-0,., 1.

We briefly outlined above, the main steps in
proof of the theorem. Detailed proof of an
analogous theorem is given in [16]. The theorem is
proved.

For the case when the function F{(g,?) is not
convex with respect to the variable ¢, the following

theorem is true.
Theorem 2.5. It is supposed, that the conditions
of Theorem 2.2. are satisfied, the sequence

{6 } c X, is determined by formula (2.13). Then:
1) the value of the functional 1,(0)) strictly
decreases for n=0,1,2,...;2) || 6,
n— oo.

- 9n+1 ||_> 0 at
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Proof of the theorem follows from Theorem 2.4.
From the results it follows that 1) if

0. = (U, Pu, vy, V5, %, %, ,d,) € X, is the solution of
optimal  control problem (2.1) - (2.4),
for which 1,(6.)=0, then
(. = u.(2), x;,xl*) eXcUxS, xS, is admissible
control; 2) the function x*(t;to,x;) , telis the
solution of differential equation (1.2), satisfies the
conditions:  x(#,;2,,X,) = X, , X.(t;t,,%,) € G(1),
tel, the gj(u*(~),x;,x1*)S0,

J=Lm, (), x5,%) =0, j=m +1,m,;3)

functionals

the necessary and sufficient condition for the
existence of a solution of the boundary value

problem (1.2) — (1.6) is 1,(6.) =0 where 6. € X,

is the solution of problem (2.1) — (2.4); 4) for the
admissible control, the value of the functional (1.1)
equals to

J (. (), x,,x,) =
1 . (2.16)
= [F (00003, 0yt = .,

0
where x.(t) = x.(t;t,,%,), t€l. In the general
case, the value

T (), X0, ) % J (e, x0,x1) =
il’lf.](u(-),xo,xl),

(u(-), x0,x,) € L,(I,R") xSy x S,.
Construction of an optimal solution

We consider the optimal control problem (1.1) —
(1.6). We define a scalar function o (t), t € I as:

o(t)= jE)(x(r),u(r),xO,x, ,r)dr, tel.

0

Then o(t) = Fy(x(¢),u(?),x,,x,,t), o(t,)=0,
o(t)=y=1(u(),x,,x,) €, Q={yeR'/

Y27y ¥y >—® }, where y=infI(u(),x;,x)27,,

the value y, is bounded from below, in particular
7,=0,if F, 20.

Now the problem of optimal control (1.1) — (1.6)
can be written in the form (see (2.1))

International Journal of Mathematics and Physics 10, Nel, 11 (2019)



18 Construction of a solution for optimal control problem with phase and integral constraints

o(t,) =y = 1(u(-),x,,x) —> inf 3.1) .
,U = Az(t):u-l_BOFO(})lﬂ’u:xo,xlat)‘l'
at conditions 3.7)

+C0(t)f(P“u,u,t)+DOfO(P“u,u,xO,xl,t),
(1) = Fy(x(t),u(t),xy,x,,t),

(3.2)
o(ty)=0,6(4) =7, olt,)
Hlty) = o =| 3 | =
k= AW+ BOS 0. () =% B i
x(t)=x)€e S, xS, ' (3.8)
Ol,l
1= fo(x(®),u(t),x,,x,t), (3.4) =| % [€0,x5x0, =T,
n(t,)=0,7()=ceQ, Oy
x()eG(t),u(-ye L,(I,R"),tel. (3.5) o(t)
pt)=pm = x(t,) |=
We introduce the notations n(t)
1
(3.9)
o(0) 4
w0 =| 0 | S| [ xem
n(t) ¢
Pu(t)e G(t),u(-)e L,(I,R"),d €T, (3.10)
01,1 OI,n OI,mz
4,0=0, Ao O, | where x(t)=PBu(t), o(t)=Pu(t), tel, y is
O,, O, ., O, ., determined by formula (3.6).
? : 2 The immersion principle. We consider the
boundary value problem (3.7) — (3.10). The
1 corresponding linear controlled system has the form
By=| O,, | . B C
0, | g =4,0¢+ 1W1(t)+ o(Dw2 (1) + (.11)
2 +D,wi(t),t €1,
0, O, wi()e L(I,RY, wa()e L,(I,R"), 512
GO B0 DO O wi() e L(1,R™),
my,r

ny

c)=mely, c(t)=wmeT. (3.13)

B=(1 0, 0.,)R=(00 1. 0.,) . . .
0 bz Thmy ) mir e Tnmy We introduce the following notations:

where Pu(t,)=o(t,), Bu=x. Bo(t) = (B,,C,(t),Dy), w(t) =
Then the optimal control problem (3.1) — (3.5) = (wi (1), w2(),ws (1)), ¥(t,7) = K()K ' (7),
has the form:

a="¥(ty,t, 1 = po> Rty 1)) =
Ru(t) =y =1(u(),x,,x)—>inf, (3.6) _ JL"P(ZO,t)EO (t)E; O (t,,0)dt,
!

at conditions
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R(t,,0) = j\P(zO,r)Eo (0)Bo(0)¥"(1,,7)dr,

R(ty,t,) = R(t,, 1)+ R(1,1,),
Ai(ts g 1) = Bo(D) ¥ (15, OR ™ (15,1, )a =
B (1,,)R™(t,,1,)a

- Cgl{l*(tOJ)R_l(tO:tl); =
ng’*(th ZL)R71 (t09t1 )5

Ell(tnuouul)
élz(t:/uouul) >
Al3(t9/u05 lul)

K, () = =BoW " ()15, YR (10, 1)) Wty 1)) =

— By (t,, )R (1,, 1)) P (2, 1,) K, (t)
=| =y (1, YR (1, 1,) ¥ (10> 1,) | = | Kin(?) |,
— Dy (t, DR (1, 1t) ¥ (15,1,) | | K5(0)

A> (1, g 1) = \P(ZJtO)R(tﬂtl)R_l(tO’tl)/uO +
+W(t,1))R(ty, VR (2,1, )P (.1, 14

K,(t)==Y¥(t,t,)R(t,, )R ' (t,, 1)V (t,,1,),t € 1.

Theorem 3.1. Let the matrix be R(t,,t)> 0.
Then the
w(t) = (wi(£), wa(t), ws(1)) € L,(I,R"""?)
transforms the trajectory of the system (3.11) —

control

(3.13) from any initial point u, € R""™ o any
given finite state u, € R if and only if

wi(t)e Wi ={m() e L,(I,R")/ wi(t)=

= () + A (6, oo 1)+ Koy (Z(0,,0),

1+n+mz

vwi()e L,(I,R"),tel}, (3.14)

V_Vz(t) eW,= {V_Vz(.) € LZ(I,RF)/V_Vz(t) =
=V (t)+K12(tﬂu0Hul)+ Klz(t)g(tn;),

Vva()e L,(I,R"),tel},
wi(t)eWs={ws(-)e L,(I,R™)/ ws(t) =
=v3(t)+ A3 (t, g, 1)+ K5 (D) 2(1,,v),

(3.15)

Vvi() e L,(I,R™),t e I}, (3.16)
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where
v(t) = (vi(8),v2(8),v3(t)), z(t) = z(t,v),t e ] is
the solution of the differential equation

T = A, ()z+ Bwi(t)+ C,(t)va(t) +
_ _ (3.17)
+D,vs(t),z(2,) = 0,

vi()eL,(I,R"),v2()e L,(I,R"),

2 (3.18)
vi(-)e L,(I,R"™).

Solution of the system (3.11) — (3.13) has the
form

g(t) = E(I,;)+ Kz (t,ﬂo,ﬂl) +

i (3.19)
+K,(O)z(t, V).t e 1.

The proof of the analogous theorem is presented
in the work [10].
Lemma 3.2. Let the matrix be R(t,,t,) > 0. Then

the boundary value problem (3.7) — (3.10) is
equivalent to the following problem

wi(t)e Wi, wi(t) = Fy(P¢ u, X, x,,

1)
> (3.20
tel, ( )

wa () e Wa,wa(t)= (B uyt),tel, (3.21)

wi(t) € Ws,ws(1) = fo (R, u, Xy, x,,0), (3.22)
tel,
POV O={pOEL.R) D=,y

=F(R¢.0,a() < p(t) < §(0), € I},

T = A(t)z+Bwi(t)+ C, (O (1) +

_ _ (3.24)
+D0V3(t),Z(to) = O,t € I:
;1(‘)6 L_z([,Rl),;z(')anL2([,R"), (325)
vi()e L,({,R™?),
(x,%) € Sy x Sp,u(-) € L,(I,R"™), (3.26)

yeQ,derl,

where {(t), t €l is determined by formula (3.19),
E(t,\_z) is the solution of system (3.17), (3.18).
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20 Construction of a solution for optimal control problem with phase and integral constraints

We consider the following optimal control
problem: minimize the functional

J,(v,u, p,xy,x,,d,y)= IFZ (q(@),t)dt =
)

= [[lwi(6)= Fy (B (0, u(0), %0, %,,0) [ +
+wa(t)= (RS @), u(®),0) ] +

+ w3 (1)~ fo(BE (@), u(0),xy,2,0)  +

+| p(t)— F(BL(2),0) [ ldt — inf  (3.27)

under the conditions (3.24) — (3.26), where
wi(t)e Wi, wa(t) e W, wi(t) e W,

v=(vi,v2,3),

q(t) =i, v2,vs,u, p,x,,x,,d,y,2(t),z(1))).
Note, that the optimization problem (3.27),
(3.24) — (3.26) is obtained on the basis of relations
(3.20) — (3.23).
Theorem 3.3. Let the matrix be, the derivative
OF,(g,1)

q

Then:

1. The functional (3.27) under conditions
(3.24) — (3.26) is continuously differentiable by
Frechet, gradient of the functional

satisfies the Lipschitz condition.

J5(0)=(JL; ().,

2v2

6),J5,(6),J5,(6),2,(6),

3., 0).3, (6),:,(6).7,(0),
6= (;1,52,;3,u,p,x0,x1,d,)/) c X,
X =L,(I,RYXL,(I,R")x L,(I,R")x

XLy, (L,R")xV xSy xS xI'xQ
H,=L,(I,R")xL,(I,R")x L,(I,R")x

xL,(I,R")x L,(I,R* )X R"xR"x R x R',

XcH, J,0)eH,

_OF(q(0).1)

Vi

J.. (8) - By (1),

_OE(q(0).1)

~Cly(t),
o N40)

T )

- Dy (),

1, @)= 260

V3

7, - 240D g G-

op

7, @[O0,

‘o

E}

Ll

71 @)=

>

OF,(q(0.0)
Ox

K

K

0F, (q(1),1)

for any point O e X iscalculated by the formulas

where J(t), tel is the solution of the adjoint

System

2.

Lipchitz condition
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. OF(q().0) . —
i =20 g,
0z
— ACION)
w(t) = - [ == dr,
" 0z(t)
gradient  J) (5),5 eX satisfies  the
|5 (81)=J5 (02)[<1]|6: -6,
(3.28)

Vﬁl,ﬁz eX.
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The proof of the analogous theorem can be found

in the work [16]. We construct the following
sequences {5,1} = {;T,;Z,;Z,un,pn,

Xo, X, ,d,, 7, } < X by the algorithm

v =P v —a,J 0.,

n- 2y

—n+l

va =E, [v> — ang';z @)1,

—n+l

vi =P, [vi—a,Jl (6],
U, = By[u, -a,J3,(6,),
Pu = Bp, —a,J5, 6],
X = B 3 —a, L, (0],

X = P [x - e, Jh, (0],

d

n+l

= P[d,~a,J., (0.,

Vo = Bsly, —a, 3, (0.)], n=0,1,2,.,

OSaﬂstzg, £>0, I=const>0, (3.29)
where V1 = {vi(-)e L,(I,R")/ || v: | B},
Va={v2()e L(I,R) || vz € B},

Vi={() e L,(I,R™) ||vs |< B,

U={u()e L,(I,R") |u < B},
I={deR"/d>0,|d<p},
£_2={7eRl/aS]/£7/*},
}z=I71xfzxﬁngxVxSoxSlexacHl,
U={u()eL,(I,R")/ |u|< B}, B>0isa

sufficiently large number.
Theorem 3.4. Let the conditions of Theorem 3.3.

be satisfied }1 is a bounded convex closed set, the
sequence {5,,} < X, is determined by the Sformula
(3.29). Then:
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1. the numerical sequence {J, (0.)} is strictly
decreasing || @y — @1 |> 0, atn — o .
If, in addition,, F, (5, t) is a convex function with

respect to a variable 5 then:

2. the lower bound of the functional (3.27) is
obtained under the conditions (3.24) — (3.26)

J.(02) = inf J(0) = minJ (0) = J_.;

0eXs feXy

3. the sequence {5,1} c X, s minimizing

lim J,(0,)=J,. = inf J,(6);

n—»0 feX2

4. the sequence { {En} c X weakly converges

fo the point 0. e }1*,
X o ={0:/J,(0+) = J . = inf J,(0) =minJ,(0)}
?e}] feX1

—-n —k —n —k
, where Vi —>Vi, Vo —>V7,
—n —k _ PR—
Vi——Vs, U, —>ux, p —> P,
X, = }Z, X - )_cj, d, —>g*, VY, >V« at

—_ —  —

— % —% —

n—o0, O = (vl,vZ,va,u*,p*,;Z,xl,d*,;/*);

5.0 J, (5*) =0, then the optimal control for
problem (1.1) — (1.6) is us eU, ;; €S, ;T s,
and the optimal trajectory

x+(1) = BE.(6) = Rlz(t,v) +

+X2 (taﬂ;’yl*)_'- KZ (t)z(tla‘_}*)]’t € Ia
where
Ve =(V1,v2,3), ly = (01,1,}0,0,,12,1),
B = (roxi,c),co€Q={c- € R" [ cjo =

—_—

:Cj _d./ad./ ZO,jZl,ml;c_,-* :Cjaj:ml +1,m2},

the inclusion ;*(t) € G(t) and limitations (1.4) —

(1.6) J (s, X0, %1) = y; hold
6. The following estimation of the rate of
convergence holds

0<J,(00)—Jp <2 n=12,....co = const>0.
n
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22 Construction of a solution for optimal control problem with phase and integral constraints

Proof of the analogous theorem is given above.

A more obvious method for solving problem
(1.1) — (1.6) is the method of narrowing the domain
of admissible controls.

Theorem 3.5. Let the conditions of Theorem 3.3.
be satisfied,

X3 =VixVaxV; ><U><V><SO><S1 xI' be a
bclunded_ convex closed set, the sequence
{0.} < X2 be defined by (3.28) with the exception
of the sequence {y,} < Q. Then:

1. the numerical sequence {J, @)},
{gn} c X, is strictly decreasing;

2. 10n =0 |> 0 at n—> o0, {0,} < Xs;

If, in addition, the function Fz(a, t) is convex

with respect to a variable 5 for fixed y, then:

3. the sequence {5,,} c }3, for a fixed
Y=V is minimizing,

4. 0n——0~c X3 atn—>w, y=7y,

5. J,(0)= inf J,(0,)= 576%3 J,(6n);

OneX3
6. the following estimation holds

OSJz(én)—Jz(é*)s%,

¢, =const>0,n= 1,2,..,{6.} = Xs.
The proof of the analogous theorem is presented
in the work [10] for a fixed y € Q, y=7.

Let the solution of the problem be - 6}2
(3.27), (3.24) — (3.26) withy = y, € Q. There are

the possible cases:
1. the value J,(6.)>0;

2. the value J,(6.)=0.
Note, that J, (5) >0, Oe X,
If J, (6+)>0, then a new value of y is
selected as ¥ = 2, and if J, (6+) =0, then a new

value yzﬁ. According to this scheme, by

dividing the uncertainty segment in half, the
smallest value of the functional (1.1), under the
conditions (1.2) — (1.6) can be found.

Conclusion

The Lagrange problem of the variation calculus
is investigated in the presence of phase and integral
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constraints for processes described by ordinary
differential equations. The particular cases of which
are the simplest problem, the Bolz problem, the
isoperimetric problem, the conditional extremum
problem.

In contrast to the well-known method for solving
the problem of the variation calculus on the basis of
the Lagrange principle, an entirely new approach an
"immersion principle" is proposed. The immersion
principle is based on the investigation of the
Fredholm integral equation of the first kind. For the
Fredholm integral equation of the first kind, the
existence theorem for the solution as well as the
theorem on its general solution are proved.

The main scientific results are:

- reduction of the boundary value problem
connected to the conditions in the Lagrange problem
to the initial optimal control problem with a specific
functional,

- necessary and sufficient conditions for the
existence of the admissible control;

- method of constructing an admissible control
on the limit point of the minimizing sequence;

- necessary and sufficient conditions for the
existence of a solution of the Lagrange problem;

- method for constructing the solution of the
Lagrange problem.
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