International Journal of Mathematics and Physics 9, Ne2, 13 (2018)

IRSTI 27.41.41

IS. Aisagaliev, !Zh. Zhunussova, °H. Akca

'Al-Farabi Kazakh National University, Almaty, Kazakhstan
e-mail: Serikbai.Aisagaliev@kaznu.kz
2Abu-Dhabi University, Abu-Dhabi, UAE
e-mail: Haydar.Akca@adu.ac.ae

Immersion principle for a variation calculus problem
with boundary conditions

Abstract. The immersion principle is based on the investigation of the Fredholm integral equation of the
first kind. For the Fredholm integral equation of the first kind, the existence theorem for the solution as
well as the theorem on its general solution are proved. The basis of the proposed method for solving the
variation problem is the immersion principle. The essence of the immersion principle is that the original
variation problem with the boundary conditions with phase and integral constraints is replaced by
equivalent optimal control problem with a free right end of the trajectory. This approach is made possible
by finding the general solution of a class of Fredholm integral equations of the first order. In this work a
method for solving the Lagrange problem with phase restrictions for processes described by ordinary
differential equations without involvement of the Lagrange principle is supposed. Necessary and
sufficient conditions for existence of a solution of the variation problem are obtained, feasible control is
found and optimal solution is constructed by narrowing the field of feasible controls. In contrast to the
well-known method for solving the problem of the variation calculus on the basis of the Lagrange
principle, an entirely new approach an "immersion principle" is proposed.

Key words: immersion principle, feasible control, integral equations, optimal control, optimal solution,
minimizing sequence.

Problem statement in the presence of phase constraints

We consider the following problem: minimize x()e G@):G@) =
the functional
" = (xeR" /o)< F(x,0) < (1), tel},

J(W(), x5, %) =
o and integral constraints

Ul
. 1.1)
— (7, (e(0), u(0), x, , x,,£)ddt — inf (
;[ ’ o gj(u(')axmxl)soa
at conditions j=1,m; g, (), x,,x) =0, (1.4)
x=A(O)x+B@) f(xu,t), tel=[t,,1] (1.2) J=mtlmy,
with boundary conditions g, (u(), xy,x,) =
I
(x(5)) = %0, X(t}) = x,) € S, x S, = S < R** (1.3) = [, (O u(®), %0, x,.0)dt, j=T,m, > (1))

0
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14 Immersion principle for a variation calculus problem with boundary conditions

where the control

u(-)e L,(I,R™). (1.6)

Here A(t), B(t) are matrices with piecewise-
continuous elements of ordersnxn, nxr,
respectively, a vector function

S Ceu,t)=(f,(x,u,0),..., f.(x,u,t)) is

continuous with respect to the variables
(x,u,t) e R"xR" x1,
condition by x, i.e.

| fCeu,t) = f(you,0) KU1 | x =y,

satisfies the Lipschitz

(1.7)
Y(x,u,t),(y,u,t) € R" xR" x 1
and the condition
< 2
Suwnlsedrl+ e re®, o

v(x)u’ t))

where [(1)>0, I(t)eL,(I,R"), c,=const>0,
¢ (H)=0, ¢(t)eL(I,R".

The vector function
F(x,t)=(F(x,1),....,F,(x,t)) is continuous with
respect to the variables (x,7) € R" xI. Function
Jo e, x,,,8) = (fo, (X, 6, X4, %,,0),..

...,me2 (x,u,x,,x,,t)) satisfies the condition

| fo(x,u,xy,x,0)[<c,(| x|+ |u |2 +
+]x, [+ [ x D+e (),

V(x,u,x,,x,,1),(y,u,x,,x,,t) €

eR'"XR"xR"xR"x1I,
¢, =const 20, c,(1)=0, c,(t)e L,(I,R").

Scalar function F{(x,u,X,,X,,t) is defined and
continuous with respect to the variables together
with partial derivatives by variables (x,u,X,,X,),
(1), @),

functions. S is given bounded convex closed set of

tel are given s — dimensional

2 .
R™, the time moments £, are fixed.

In particular, the set

— 2n .1
S—{(XO,XI)ER /Hj(xoaxl)goa J=1p;
<a_/a(x0,x1)>: 0, j:p1+15p2}, Where
H (x,,x,), j=1,p, ~are convex functions,

a e RZ", j=p, +1, p, are given vectors.
Note, that if the conditions (1.7), (1.8) are
satisfied for any controlu(:) € L,(/,R™) and the

initial condition x(#))=x, of the differential
equation (1.2) has a unique solution x(¢), ¢ e [I.

This solution has derivative X € L,(/,R") and
satisfies equation (1.2) for almost all ¢ € 1.

It should be noted that integral constraints

g (), x5, %) =

= jfo] (x(@),u(t),x,,x,,t)dt £ 0,

(1.9)
Yo
Jj=Lm,,

by introducing additional variables d; >0,

j =1,m,, can be written in the form

g_j(u(.)axoaxl) = _d_l‘a J = laml'

Let the vector be
c=(-d,,. ..,—a’m1 ,0,0,...,0)0e R"™, where
d, >0, j=1,m,. Let a set be

Q={ceR™/d,>0, j=1,m}, where d,>0,

j =1,m, are unknown numbers.

Definition 1.1. The triple
(u.(), x5, x,) € U x S, x S, is called by admissible
control for the problem (1.1) — (1.6), if the boundary
problem (1.2) — (1.6) has a solution. A set of all
admissible  controls is  denoted by X,
2cUxS,xS,.

From this definition it follows that for each
element of the set X the following properties are
satisfied: 1) the solutions X.(f), tel of the
differential equation (1.2), issuing from the point
x, € S,, satisfy the condition x.(f)= x;k €S, and

International Journal of Mathematics and Physics 9, Ne2, 13 (2018)



S. Aisagaliev et al. 15

also  (x,,x)eS, xS, =S; 2) the inclusion

x.(t) € G(t), t € I holds; 3) for each element of the

set ¥ we have the equality g(u(-),xo,xl)Zz,
where

.(),%0,37) = (& (1), %0, X)), 8,y (), X5, X))

The following problems are set:

Problem 1.2. Find the necessary and sufficient
conditions for the existence of a solution of the
boundary value problem (1.2) — (1.6).

Note, that the optimal control problem (1.1) —
(1.6) has a solution if and only if the boundary value
problem (1.2) — (1.6) has a solution.

Problem 1.3. Find an admissible control

(. (t),x,,x, ) €L cUxS, x8,.
If problem 1 has a solution, then there exists an

admissible control.
Problem 1.4. Find the optimal control

u.(t) e U(t), the point (xo, xi)e S, xS, =S and
the optimal trajectory x_*(t;to,;o), tel,

where x.(1) e G(t), tel, x.(t)=x €8,
gj(u_*('):;(]a)_cl) < 07 j=1, my,
g,(.(),x0,x) =0, j=m +1,m,,

J (. (), x0,x1) = inf J (u(), x0, x1),

Y(u(), x0,x1) € L,(I,R")x S, X S..

One of the methods for solving the problem of
variation calculus is the Lagrange principle. The
Lagrange principle allows to reduce the solution of
the original problem to the search for an extremum
of the Lagrange functional obtained by introducing
auxiliary variables (Lagrange multipliers).

In the classical variation calculus, it is assumed
that the solution of the differential equation (1.2)
belongs to the space C1(I, R™) and the control u(?), t
€ I of the space C(I,R™) in the optimal control
problems [5], the solution x € KC' (I, R") and
control u(t) € KC'(I, R™). In this paper, the control
u(t), t €1is chosen from LI, R™), and the solution
x(t), t €11s an absolutely continuous function on the
interval I = [t, t;]. For this case, the existence and
uniqueness of the solutions of the initial problem for
equation (1.2) are presented in the references [4, 6,
7, 8].

The purpose of this paper is to create a method
for solving the problem of the variation calculus for
processes described by ordinary differential

equations with phase and integral constraints that
differ from the known methods based on the
Lagrange principle. It is a continuation of the
scientific research presented in [9, 10].

The immersion principle

Let the vector function be f,(x,u,x,,x,t)=

= (fo ()c,u,)co,xl,t),...,me2 (x,u,x,,X,,1)). We

introduce the vector function #(7) = (7, ®)....m,, (1)),

t

tel as n(t)= Iﬁ)(x(r),u(r),xo,xl,r)dr, tel.
o
It follows that

() = fo(x(1),u(t), %y, X, 1),

n(t,)=0,1(4) =
=ceQ, (x.%) €S, u(t) e L,(I,R"),
x(t) € G(1).

Now the optimal control problem (1.1) — (1.6) is
written in the form: minimize the functional

J(W(-), %y, %) =
- le0 (@), u(t), %, x,, 1)t — inf D

1
0
at conditions

= AWDx+ BO) f(ut), tel, (2.2)

() = fo(x(),u(t),xy,x,,t), tel, (2.3)
(x,,%) €S =8, x5,

i) =0, nty=ceo, Y

X(H) e G(), u()e L(I,R"), tel. (2.5

Note, that the problems (1.1) — (1.6) and (2.1) —
(2.5) are equivalent. We introduce the following
vectors and matrices

X A A(t) On,m2

= s t)= s
*“n) 4970, o..
2° 2°"2
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16 Immersion principle for a variation calculus problem with boundary conditions

B(t) 0,,
Bl(t):[O ]’ Bz:[[ ZJ,
ny ,r my

_[(x@)=x) _ _ x(t) = x,
f(to)_(ﬂ(to)ZOJ 50, ‘f(tl) [77(1‘1):;}

R=(,.0,,).

n’~"n,

where O, , is a rectangular matrix of order k x ¢

with zero elements, /, is the unit matrix of order
nxn.

Then the optimal control problem (2.1) — (2.5)
has the form: minimize the functional

J(u(')>xo>x1) =

= [Fy(RE®.u(0).x,.x,.0)dt > inf  (20)

)
at conditions

E=A)E+B () f(RE,u,t)+

2.7
+B, (P& 1, Xy, %,,1), @.7)

(L) =8 €8, XOmz,l’ (1)=& €8, %0, (2.8)

BE() e G(t), u()e L,(I,R™), ceQ. (2.9)

Let a set be

I={deR"/d>0}. (2.10)

We consider a linear controllable system
= A0y +BOWO +Bwy(0), 11, @.11)

w()eL,(I,R"), w,()eL,(I,R™), (2.12)
y(ty) =4(t,) =&, € $,x0, ;.

(2.13)
() =E&() =& €S %x0.
The bases of the immersion principle are the
following theorems on the properties of the solution
of the Fredholm integral equation of the first kind

il
Ku= j K(t,,0)u(t)dt = a,

0

(2.14)

where K:L,(I,R")—>R", K(t,,t) is a given
matrix of order 7, Xk with piecewise-continuous
elements by ¢ for each fixed #,, #, €A, R',
tLeA cR', A;,nA =0, @ is an empty set,
aeR" is any given vector, u(-) € L,(I,R") is the

origin function.
Theorem 2.1. The integral equation (2.14) for

any fixed aa € R" has a solution if and only if the
matrix

4
Clty,t) = [K(tg, 0K (t5,0)t, (2,15

)

of order N XN, is positive definite, where (*) is a
transposition sign.
Theorem 2.2. Let the matrix C(%,,t) be

positive definite. Then the general solution of the
integral equation (2.14) has the form

u(t) = K" (t,,t)C™" (t,,t,)a+ v(t) -

—K*(ZO’t)C_I(tmtl)jK(to,l‘)V(t)dt, tel, (2.16)

ho

where V()€ L,(I,R") is an arbitrary function,

acR" is any vector.

The proofs of Theorems 2.1. and 2.2. are given
in [9, 10].

Let the matrix B,(¢)=(B,(¢),B,) of order
(n+m)x(m,+r), and a
w(t) = (w, (), w,(t)) € L(I,R™™). 1t is easy to
verify that the control w(:)eL,(/ ,R™™), which
takes the trajectory of the system (2.9) from any

vector function

initial state &, to any desired final state &, is a
solution of the integral equation

jl D(t,,0)By()w(t)dt = a,

)

2.17)
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where ®(t,7) = A(t)A'(z), A(¢) is a fundamental
matrix of solutions of linear homogeneous system

p=A(t)p, the vector

a=a(&),&)=0(t,,1)E &,

As follows from (2.14), (2.17), the matrix
K(t,,t)=D(t,,1)B;(2), at n=n+m,,

k=r+m,. For the integral equation (2.15) the

statements of Theorems 2.1. and 2.2. are applicable.
From the initial data of the system (2.11) — (2.13)
we define the following matrices and vectors

(2.18)

T(ty,1,) = j.q)(toat)Bs (I)B; (t)d)* (4, 0)dt =

)
1
= j K(t,, )K" (1,,0)dt = C(t,,1,),
%
A(1,€,,&) = By® (6, )T (¢t )a =
=K' (t,,t,)C™'(t,,t,)a =
(B{()® (t,,O)T ' (t,1,)a
B,® (t,,0T ' (t,,t)a )

N(@) = _B;(t)q)*(to’t)T_l(toatl)q)(to’tl) =
= _K*(toat)c(to’t] YD(ty,1) =

(B O (1,07 (t,.1)®(t,.1) ) _( Vi (1)
=B (1, 0T (14,,1,)® (1, 1,) No(t))

A (1,E,,8) = O, 1)T(1,0)T ™ (,,1,)&, +
+®(t, )T (t,, )T (,,1)®(2,,1,)E,,

Nz(t) = _(D(tato)T(toat)T_l(to’tl)q)(toat1 )5
teT,

T(t,t)= j(I)(to,r)B3 (7)B(r)® (t,,7)dr,
T(t,,t)=T(t,,t,)=T(t,1,), tel,

where the vector a is defined by formula (2.16).

Theorem 2.3. Let the matrix be T(t,,t)>0.

Then the control

w(-)=w,(),w,(-)) e L,(I ,R™™) transforms the
trajectory of the system (2.11) — (2.13) from the
initial point &, € S, xO0 to the final state

7712,1
& €8, xQ ifand only if

w@®)eW, ={w(E)eL,(,R)/w) =
=V () + B{ (DD (1, )T (ty,1,)a +

+N,, (D)z(¢,,v), (2.19)
tel, Yv(), v()eL,(I,R")},

wy (1) €W, = {w,(-) € L,(I,R™)/ w,(t) =
=v,()+ B,® (t,,1)T ' (t,,t,)a+

+N,(0)z(t,,v), (2.20)

tel, Yv,(), v,(-)e L,(I,R™)},

V() = ((),v,(1)),

v,(-) e L,(I,R™ ) are arbitrary functions. The

Vi () € Lz(laRr)a

where

function z(¢,v) =2z(t,v,,v,), tel is the solution
of the differential equation

z=Az+B,(t)v,(@)+ B,v, (1),
2(4,)=0, tel, (2.21)
vw()eL,(I,R"), v,()eL,(I,R™.
(2.22)
The solution of the differential equation (2.11)

corresponding to the control (2.19), (2.20) has the
form

y(@)=z(0)+ A, (2,6,,8)+ N, ()z(t,,v),

tel, (2.23)

where z(t)=z(t,,v), tel.
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18 Immersion principle for a variation calculus problem with boundary conditions

Proof. The proof of the theorem follows from
Theorems 2.1. and 2.2. As follows from the above,
the solution of the boundary value problem (2.11) —
(2.13) reduces to finding the general solution of the
integral equation (2.17). The integral equation

(2.17) is a particular case of (2.14), where
K(t,,t)=®(t,,t)B;(t). Further, by replacing
K(t,,1) on D(t,,1)B,(1) we get
C(t,,t,)=T(t),t,) (see (2.15)). From (2.16)

follows (2.19), (2.20). The differential equation
(2.21) with control (2.22) and relation (2.23) follows
directly from formulas

z(t,v) = j.(I)(t,‘r)B3 (t)v(r)dr,

)

2(t,v) = ®(t,t,) j ®(t,,1)B, (t)v(t)dL.

)

It is easy to see, that y(¢,) =&, ¥(t)=4¢.
The theorem is proved.

Note, that: 1) the sets W, =W, (t)c L,(I,R"),
W, =W,(t)c L,(I,R"™) contain all sets of the

functions W;(¢), W,(f), te€l, for which the
boundary value problem (2.11) — (2.13) has a
solution; 2) w(?)eW,, wy(¢)eW,, then the
solution of the system (2.11) — (2.13) is defined by
formula (2.23); 3) outside sets W}, W, there are no

controls for which the boundary value problem
(2.11) — (2.13) has a solution; 4) Theorem 2.3.
allows to replace the boundary value problem (2.11)
—(2.13) by the initial problem (2.21) — (2.23).
Lemma 2.4. Let the matrix be T(t,,t,)>0.

Then the boundary problem (2.7) — (2.10) is
equivalent to the following problem

wi(6) € W, wi () = f(By(0),u(?), X, %,,0),

2.24
tel, ( )

w, () € Wy, wy(8) = fo(By(8),u(t), xy,x,,1),

2.25
tel, ( )

p()=F(Ey@),0)eV =V()={p()e 596
eL,(I,R)/ o)< p(t)< P(t),t eI}, (2.26)
z=A@)z+ B {t)v,(H)+

+By,(1), 2(t)=0,rel, 2D

vw()eL(I,R),v,()eL,(I,R™), (2.28)

(xp,%,) €S, xS, =S c R,

(2.29)
u(-ye L,(I,R"),d €T,
where the function y(t), tel is defined by the

formula (2.23).

Proof. Lemma 2.4. states, that the boundary
value problem (2.7) — (2.10) has a solution if and
only if the relations (2.24) — (2.29) are satisfied.

In fact, if the relations (2.24) — (2.29) are held,
then y()=4£&(), tel, moreover

V) =&() =&, y(t)=481)=4
inclusions (2.9), (2.10) are satisfied.

We suppose, that the boundary value problem
(2.7) — (2.10) has a solution. It is possible if and

if f(RE(0),u(0),t) e W,
Jo(B&(t),u(t),xy,x,,t) €W, by Theorem 2.3.
These inclusions are equivalent to equalities (2.24),
(2.25), where z(t), tel — is a solution of the
differential equation (2.27) with controls (2.28). The
inclusion B&(t) € G(f), tel has the form (2.26),

and the relations (2.9), (2.10) are written in the form
(2.29). The lemma is proved.

Lemma 2.5. Let the matrix be T(t),t,)>0.
Then the boundary value problem of optimal control

with constraints (1.1) — (1.6) is equivalent to the
following problem: minimize the functional

and the

only

I(u()a p(), Y ()a V) ()9 Xos X5 d) =

il
= J.E)(Ply(t)’u(t)’xovxlat)dt — inf (2'30)

%

at conditions
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Li(u(), p()sv, (), v, (), Xy, X,,d) =
= [F(q().0dt = [ w,(0)-

X %

—f(By(0),u(t),0) | +| w,(t)—

~ £, (PO ut) 2,0+ @3
+| p(t)— F(Ry(1),)[’1dt =0,
2= A(O)z+B,(E)v,(t) + By, (1),
() =0,1el, (2.32)
vw()eL,(I,R),v,()eL,(I,R™), (2.33)
(x,,%,) € S, xS, =S <R, (234)

p®)eV(t),u(-)eL,(I,R"),del,

where W(t) W], wy(t) eW,, the function y(t),
t € I is defined by the formula (2.23).
Proof. The proof follows from Lemma 2.4. The

value of the functional /; =0 The functional /;, =0

if and only if the equalities (2.24) — (2.26) are
satisfied, relations (2.27) — (2.29) coincide with
(2.31) — (2.33). The functional (1.1) can be written
in the form (2.30). The lemma is proved.

The function

F(q@),1)=
=l w (D)= f(By@),u®), X, x,0) [ +
+ | Wy ()= o (By(0),u(t), xy,%,,1) [* +
+| p(t) = F(Ry(®),0) [,

where W, () €W, wy(t) €W,
y(t)=z(t,v)+ A, (t,&,,E) + N, (O)z(t,v), tel,

q(t) = (2(t,v), 2(2,,v),u(t), p(£),, (1), v, (1), X, %,, )

Note, that:

1) Since the initial problem (1.1) — (1.6) is
equivalent to (2.30) — (2.33), that the problem (1.1)
— (1.6) has a solution if and only if the relations
(2.30) — (2.33) are satisfied;

2) Since the value /; =0, that for the existence

of a solution of the boundary value problem (1.2) —
(1.6) it is mnecessary and sufficient that

inf 1,(u, p,v,,v,,%,,%,,d) =0 under the
conditions (2.27) — (2.29).

3) The transition from the original boundary
value problem (1.2) — (1.6) to the initial optimal

control  problem  I,(u, p,v,,V,,X,,X,,d) = inf

under the conditions (2.27) — (2.29) is called the
immersion principle.

Conclusion

The Lagrange problem of the variation calculus
is investigated in the presence of phase and integral
constraints for processes described by ordinary
differential equations. The particular cases of which
are the simplest problem, the Bolz problem, the
isoperimetric problem, the conditional extremum
problem.

The main scientific results are:

—reduction of the boundary value problem
connected to the conditions in the Lagrange problem
to the initial optimal control problem with a specific
functional,

— necessary and sufficient conditions for the
existence of the admissible control;

— method of constructing an admissible control
on the limit point of the minimizing sequence;

The scientific novelty of the results is that: there
is no need to introduce additional variables in the
form of Lagrange multipliers; proof of the existence
of a saddle point of the Lagrange functional.
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