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Immersion principle for a variation calculus problem  

with boundary conditions 
 

 
Abstract. The immersion principle is based on the investigation of the Fredholm integral equation of the 
first kind. For the Fredholm integral equation of the first kind, the existence theorem for the solution as 
well as the theorem on its general solution are proved. The basis of the proposed method for solving the 
variation problem is the immersion principle. The essence of the immersion principle is that the original 
variation problem with the boundary conditions with phase and integral constraints is replaced by 
equivalent optimal control problem with a free right end of the trajectory. This approach is made possible 
by finding the general solution of a class of Fredholm integral equations of the first order. In this work a 
method for solving the Lagrange problem with phase restrictions for processes described by ordinary 
differential equations without involvement of the Lagrange principle is supposed. Necessary and 
sufficient conditions for existence of a solution of the variation problem are obtained, feasible control is 
found and optimal solution is constructed by narrowing the field of feasible controls. In contrast to the 
well-known method for solving the problem of the variation calculus on the basis of the Lagrange 
principle, an entirely new approach an "immersion principle" is proposed.  
Key words: immersion principle, feasible control, integral equations, optimal control, optimal solution, 
minimizing sequence.  

 
 
Problem statement  
 
We consider the following problem: minimize 

the functional   
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where the control  
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Here ),(tA  )(tB  are matrices with piecewise-

continuous elements of orders ,nn   ,rn   
respectively, a vector function 

)),,(,),,,((=),,( 1 tuxftuxftuxf r  is 
continuous with respect to the variables 

,),,( IRRtux mn   satisfies the Lipschitz 
condition by x, i.e. 
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The vector function 
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respect to the variables .),( IRtx n   Function 
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Scalar function ),,,,( 100 txxuxF  is defined and 
continuous with respect to the variables together 
with partial derivatives by variables ),,,,( 10 xxux  

),(t  ),(t  It  are given s – dimensional 
functions. S is given bounded convex closed set of 

,2nR  the time moments 10,tt  are fixed. 

In particular, the set 
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2
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,2n
j Ra   21 1,= ppj   are given vectors.  

Note, that if the conditions (1.7), (1.8) are 
satisfied for any control ),()( 2

mRILu   and the 
initial condition 00 =)( xtx  of the differential 
equation (1.2) has a unique solution ),(tx  .It   

This solution has derivative ),(2
nRILx  and 

satisfies equation (1.2) for almost all .It   
It should be noted that integral constraints 
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by introducing additional variables 0,jd  

,1,= 1mj  can be written in the form 
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Definition 1.1. The triple 
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control for the problem (1.1) – (1.6), if the boundary 
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From this definition it follows that for each 

element of the set Σ the following properties are 
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also ;=),( 10
*
1

*
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The following problems are set:  
Problem 1.2. Find the necessary and sufficient 

conditions for the existence of a solution of the 
boundary value problem (1.2) – (1.6).  

Note, that the optimal control problem (1.1) – 
(1.6) has a solution if and only if the boundary value 
problem (1.2) – (1.6) has a solution.  

Problem 1.3. Find an admissible control 
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If problem 1 has a solution, then there exists an 
admissible control.  

Problem 1.4. Find the optimal control 
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One of the methods for solving the problem of 

variation calculus is the Lagrange principle. The 
Lagrange principle allows to reduce the solution of 
the original problem to the search for an extremum 
of the Lagrange functional obtained by introducing 
auxiliary variables (Lagrange multipliers). 

 In the classical variation calculus, it is assumed 
that the solution of the differential equation (1.2) 
belongs to the space ����� ��) and the control u(t), t 
∈ I of the space ���� ��) in the optimal control 
problems [5], the solution x ∈ KC1 (I, Rn) and 
control u(t) ∈ KC1(I, Rm). In this paper, the control 
u(t), t ∈ I is chosen from L2(I, ��), and the solution 
x(t), t ∈ I is an absolutely continuous function on the 
interval I = [t0, t1]. For this case, the existence and 
uniqueness of the solutions of the initial problem for 
equation (1.2) are presented in the references [4, 6, 
7, 8].  

The purpose of this paper is to create a method 
for solving the problem of the variation calculus for 
processes described by ordinary differential 

equations with phase and integral constraints that 
differ from the known methods based on the 
Lagrange principle. It is a continuation of the 
scientific research presented in [9, 10]. 

 
The immersion principle  
 
Let the vector function be 0 0 1( , , , , ) =f x u x x t  

= 01 0 1 0 0 12
( ( , , , , ), , ( , , , , )).mf x u x x t f x u x x t  We 

introduce the vector function 1 2
( ) = ( ( ), , ( )),mt t t    

It  as .,),,),(),((=)( 100

0

Itdxxuxft
t

t

   

It follows that 
 

),,,),(),((=)( 100 txxtutxft  
 

0 1

0 1 2

( ) = 0, ( ) =

, ( , ) , ( ) ( , ),
( ) ( ).

m

t t

c Q x x S u t L I R
x t G t

 

   


 

 
Now the optimal control problem (1.1) – (1.6) is 

written in the form: minimize the functional  
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Note, that the problems (1.1) – (1.6) and (2.1) – 
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vectors and matrices  
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where qkO ,  is a rectangular matrix of order qk   

with zero elements, nI  is the unit matrix of order 
.nn  

Then the optimal control problem (2.1) – (2.5) 
has the form: minimize the functional  
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The bases of the immersion principle are the 

following theorems on the properties of the solution 
of the Fredholm integral equation of the first kind 
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Theorem 2.1. The integral equation (2.14) for 
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of order 11 nn   is positive definite, where (*)  is a 
transposition sign. 

Theorem 2.2. Let the matrix ),( 10 ttC  be 
positive definite. Then the general solution of the 
integral equation (2.14) has the form 
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The proofs of Theorems 2.1. and 2.2. are given 
in [9, 10]. 
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where ),()(=),( 1   tt  )(t  is a fundamental 
matrix of solutions of linear homogeneous system 

,)(= 1  tA  the vector 
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where the vector a is defined by formula (2.16).  
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Proof. The proof of the theorem follows from 
Theorems 2.1. and 2.2. As follows from the above, 
the solution of the boundary value problem (2.11) – 
(2.13) reduces to finding the general solution of the 
integral equation (2.17). The integral equation 
(2.17) is a particular case of (2.14), where 

).(),(=),( 300 tBttttK   Further, by replacing 

),( 0 ttK  on )(),( 30 tBtt  we get 

),(=),( 1010 ttTttC  (see (2.15)). From (2.16) 
follows (2.19), (2.20). The differential equation 
(2.21) with control (2.22) and relation (2.23) follows 
directly from formulas 
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It is easy to see, that ,=)( 00 ty  .=)( 11 ty  

The theorem is proved. 
Note, that: 1) the sets ),,()(= 211
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222
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functions ),(1 tw  ),(2 tw  ,It  for which the 
boundary value problem (2.11) – (2.13) has a 
solution; 2) ,)( 11 Wtw   ,)( 22 Wtw   then the 
solution of the system (2.11) – (2.13) is defined by 
formula (2.23); 3) outside sets ,1W  2W  there are no 
controls for which the boundary value problem 
(2.11) – (2.13) has a solution; 4) Theorem 2.3. 
allows to replace the boundary value problem (2.11) 
– (2.13) by the initial problem (2.21) – (2.23).  

Lemma 2.4. Let the matrix be 0>),( 10 ttT . 
Then the boundary problem (2.7) – (2.10) is 
equivalent to the following problem  

 
1 1 1 1 0 1( ) , ( ) = ( ( ), ( ), , , ),

,
w t W w t f P y t u t x x t

t I



 (2.24) 

 
2 2 2 0 1 0 1( ) , ( ) = ( ( ), ( ), , , ),

,
w t W w t f P y t u t x x t

t I



  (2.25) 

 
 

1

2

( ) = ( ( ), ) = ( ) = { ( )

( , ) / ( ) ( ) ( ), },s

p t F P y t t V V t p
L I R t p t t t I 

  

   
     (2.26) 

 
1 1 1

2 2 0

= ( ) ( ) ( )
( ), ( ) = 0, ,

z A t z B t v t
B v t z t t I

 
 


          (2.27) 

 
),,()(),,()( 2

2221
mr RILvRILv      (2.28) 

 
2

0 1 0 1

2

( , ) = ,

( ) ( , ), ,

n

m

x x S S S R
u L I R d

  

  
          (2.29) 

 
where the function )(ty , It  is defined by the 
formula (2.23).  

Proof. Lemma 2.4. states, that the boundary 
value problem (2.7) – (2.10) has a solution if and 
only if the relations (2.24) – (2.29) are satisfied.  

In fact, if the relations (2.24) – (2.29) are held, 
then )(=)( tty  , It , moreover 

000 =)(=)(  tty , 111 =)(=)(  tty  and the 
inclusions (2.9), (2.10) are satisfied. 

We suppose, that the boundary value problem 
(2.7) – (2.10) has a solution. It is possible if and 
only if 11 )),(),(( WttutPf  , 

21010 ),,),(),(( WtxxtutPf   by Theorem 2.3. 
These inclusions are equivalent to equalities (2.24), 
(2.25), where )(tz , It  – is a solution of the 
differential equation (2.27) with controls (2.28). The 
inclusion )()(1 tGtP  , It  has the form (2.26), 
and the relations (2.9), (2.10) are written in the form 
(2.29). The lemma is proved. 

Lemma 2.5. Let the matrix be 0>),( 10 ttT . 
Then the boundary value problem of optimal control 
with constraints (1.1) – (1.6) is equivalent to the 
following problem: minimize the functional 

 
1 2 0 1

1

0 1 0 1

0

( ( ), ( ), ( ), ( ), , , ) =

( ( ), ( ), , , ) inf
t

t

I u p v v x x d

F P y t u t x x t dt

   

    (2.30) 

 
at conditions 
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1 1 2 0 1

1 1

1 1

0 0
2

1 2
2

0 1 0 1
2

1

( ( ), ( ), ( ), ( ), , , ) =

( ( ), ) = [| ( )

( ( ), ( ), ) | | ( )

( ( ), ( ), , , ) |
| ( ) ( ( ), ) | ] = 0,

t t

t t

I u p v v x x d

F q t t dt w t

f P y t u t t w t
f P y t u t x x t
p t F P y t t dt

   

 

  

 

 

 

    (2.31) 

 
1 1 1 2 2

0

= ( ) ( ) ( ) ( ),
( ) = 0, ,

z A t z B t v t B v t
z t t I
 




          (2.32) 

 
),,()(),,()( 2

2221
mr RILvRILv        (2.33) 

 
2

0 1 0 1

2

( , ) = ,

( ) ( ), ( ) ( , ), ,

n

m

x x S S S R
p t V t u L I R d

  

   
           (2.34) 

 
where 11 )( Wtw  , 22 )( Wtw  , the function )(ty , 

It  is defined by the formula (2.23). 
Proof. The proof follows from Lemma 2.4. The 

value of the functional 01 I  The functional 0=1I  
if and only if the equalities (2.24) – (2.26) are 
satisfied, relations (2.27) – (2.29) coincide with 
(2.31) – (2.33). The functional (1.1) can be written 
in the form (2.30). The lemma is proved.  

The function 
 

1
2

1 1 0 1
2

2 0 1 0 1
2

1

( ( ), ) =

| ( ) ( ( ), ( ), , , ) |

| ( ) ( ( ), ( ), , , ) |

| ( ) ( ( ), ) | ,

F q t t
w t f P y t u t x x t
w t f P y t u t x x t

p t F P y t t

  

  

 

 

 
where 11 )( Wtw  , 22 )( Wtw  , 

),()(),,(),(=)( 12102 vtztNtvtzty   , It , 

),,),(),(),(),(),,(),,((=)( 10211 dxxtvtvtptuvtzvtztq
. 

Note, that:  
1) Since the initial problem (1.1) – (1.6) is 

equivalent to (2.30) – (2.33), that the problem (1.1) 
– (1.6) has a solution if and only if the relations 
(2.30) – (2.33) are satisfied; 

 
 
 

2) Since the value 01 I , that for the existence 
of a solution of the boundary value problem (1.2) – 
(1.6) it is necessary and sufficient that 

0=),,,,,,(inf 10211 dxxvvpuI  under the 
conditions (2.27) – (2.29). 

3) The transition from the original boundary 
value problem (1.2) – (1.6) to the initial optimal 
control problem inf),,,,,,( 10211 dxxvvpuI  
under the conditions (2.27) – (2.29) is called the 
immersion principle.  

 
Conclusion  
 
 The Lagrange problem of the variation calculus 

is investigated in the presence of phase and integral 
constraints for processes described by ordinary 
differential equations. The particular cases of which 
are the simplest problem, the Bolz problem, the 
isoperimetric problem, the conditional extremum 
problem.  

The main scientific results are: 
 –reduction of the boundary value problem 

connected to the conditions in the Lagrange problem 
to the initial optimal control problem with a specific 
functional;  

– necessary and sufficient conditions for the 
existence of the admissible control;  

– method of constructing an admissible control 
on the limit point of the minimizing sequence;  

The scientific novelty of the results is that: there 
is no need to introduce additional variables in the 
form of Lagrange multipliers; proof of the existence 
of a saddle point of the Lagrange functional. 
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