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Numerical aspects  
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of electrical prospecting with direct current

Abstract. This paper is devoted to the numerical aspects of the adaptive computational grid in solving the 
problems of electrical prospecting with direct current. The purpose of this work is to determine the ac-
ceptable parameters of various algorithms for constructing a computational grid for computing electrical 
tomography curves associated with the ground surface relief. Optimal algorithms for constructing a com-
putational grid in problems of calculating of apparent resistivity curves, associated with the ground surface 
relief, can improve the accuracy in computation and cost-effectiveness in using computational resources. 
A mathematical model for calculating the field and of apparent resistivity curves, based on the theory of 
potentials, and the discretization of the surface of the calculated boundary are described. The problem is 
reduced to solving an integral equation.
We described here results of that method applied to the relief of simple 2D forms. Our calculations show 
that use of grid with triangulation gives the same results as a grid constructed with a refinement at the vicin-
ity of the source electrode. However, due to the refinement at the vicinity of the source electrode and mea-
suring line, the grid with triangulation is more efficient and allows one to calculate the function of apparent 
resistivity with relatively small number of nodes – approximately above 2000.
The data obtained in numerical experiments are basis for further research and for definition of the influence 
of relief forms on the distortion of apparent resistivity curves.
Key words: Method of integral equations, EIT, ground surface relief, apparent resistivity curves, 
computational grid.

Introduction

Progress in computing technologies has led 
to significant changes in software and hardware 
for geophysical methods of sounding of non-ho-
mogeneous media. Portable multi-channel sys-
tems for computerized geophysical equipments 
have evolved, which have changed the traditional 
method of field work. One of the leading meth-
ods of geoelectric research, used worldwide is 
the Vertical Electrical Sounding (VES) method 
in the modification of the electrical impedance 
tomography (EIT). The works that had the most 
influence on the development of the electrical to-
mography method in geophysics are the following: 
Edwards  L.S. (1977); Barker R.D. (1981, 1992); 
Griffits D.H. and Turnbill J. (1985); Zohdy A.A.R. 

(1989); Dahlin T. (1993, 1996); Loke M.H. and 
Barker R.D. (1996); Bobachev A.A., Modin I.N. 
and others (1995, 1996, 2006, 2008) [1-10].

In the problems of VES the study of the influ-
ence of experimental conditions on apparent resistiv-
ity curves is of major importance, in particular, that 
is the impact of a relief of the sounding medium. The 
review of the main researches concerning the influ-
ence of the ground surface relief is reported in the 
article [11]. As it is shown in works [11, 12], an ef-
ficient and accurate way to calculate the influence of 
a shape of a ground surface relief on sounding data 
is the Integral Equations Method (IEM). The method 
is based on representation of the potential of the sta-
tionary electric field via potentials of simple layers 
distributed on a surface of the medium and internal 
contact boundaries.
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In practice, construction of a geoelectric section 
of the medium is carried out on the basis of meas-
urements of apparent resistivity and using of 2D and 
3D inversion programs. These programs solve the 
inverse problem of EIT (for instance, Res2DInv, the 
author is M.H. Loke, 2000; and ZondRes2D of A.E. 
Kaminsky, last updated 26.06.10). In most cases the 
solution is smooth with blurred boundaries that do 
not always correspond to real geological situation. 
The sharp geoelectric borders become diffused, and 
the distortions of curves of apparent resistivity re-
lated with a surface relief generate pseudo anoma-
lies. From the best of our knowledge there are no 
programs which accurately calculate the influence of 
distortions, related with a ground surface relief.

Mathematical model and discretization of the 
surface 

As it is shown in [11], the problem of the numeri-
cal computation of a direct current field in the ho-
mogeneous medium with a ground surface relief can 
be reduced to the solution of the Fredholm integral 
equation of the second kind with a weak singularity: 

          (1)

Here M, P are points of the boundary Г of the me-
dium on which the integral is taken, q(P) is the den-
sity of a simple layer on boundary Г, which allows to 
calculate the potential of the field,  is a corner 
between a normal vector at the point P and the vec-
tor PM, F0(P) is the given function. Actually, F0(P) 
is expressed via the potential of the source electrode. 

In [11] the method of integral equations is real-
ized numerically on the grid refined near the source 
electrode, where large gradients of the field exist. 
The relief is mapped on the plane surface and the cal-
culated grid is constructed in polar coordinates. The 
source electrode is located at the origin point. The 
measuring line passes along the radius. Then the grid 
is adapted to the relief surface and to the position of 
the source electrode by the inverse mapping it to the 
relief surface (Figures 1, 2). Due to the integration 
error for coarse grid the calculated values of apparent 
resistivity show nonphysical oscillations when the 
distance from the origin of the coordinates (Figure 3, 
an asterisk indicates the position of the current source 
electrode) increases. 

To avoid these oscillations in the numerical 
solution, we have to make a significant refinement of 
the mesh and a local refinement of grid cells near the 
measurement line. It complicates the algorithm and 
breaks uniformity of the calculations.

Figure 1 – Computational grid in the polar coordinate system mapped to the plane

Other source of errors is the replacement of the 
infinite domain of integration by a finite domain; it 
means that we neglect induced charges outside of 
the calculated area. For decrease of this error it is 
necessary to reach compromise between expansion of 
calculated domain and the number of grid nodes. The 
solution is the use of a coarse grid far from current 
sources and the measurement line, since in these 

areas the potential of the field decreases inversely 
proportional to radius. 

To avoid mentioned above nonphysical 
oscillation and exclude excessive refinement of the 
grid, an alternate computational grid is constructed. 
This grid is based on the triangulation and is adapted 
not only to the position of the source electrode, 
but also is condensed near measuring line. In that 
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Figure 2 – Computational grid in the Cartesian coordinate system with the surface topography

Figure 3 – The calculation of the apparent resistivity far from the current source electrode  
and the corresponding relief for the grid with number of layers N = 20

algorithm the calculated area is set by some oval, its 
size is sufficient in order that it has been possible to 
neglect the field far from the source (Figures 4, 5). 

Acceptable size of the grid is determined via series 
of numerical experiments for each considered relief 
form. 

The grid construction problem is reduced to the 
following steps: map a relief surface of the medium 
on 2D domain of an oval shape on the plane. This 
oval is composed of two semicircles and one rect-
angle. Then we divide that oval into triangles with 
a condensation to the line connecting the centers of 
the semicircles. This line lies on a larger axis of an 
oval and corresponds to the measuring line. Due to 
the symmetry for 2D examples described below, only 

nodes of one half of the oval are used for calcula-
tions. 

Note that in the article [13] several tests of the de-in the article [13] several tests of the de-several tests of the de-everal tests of the de-
scribed method are successfully performed for two-
layered model of the medium 

Brief description of the construction algorithm 
of a grid nodes. The user sets quantity of layers 
N, i.e. the oval is divided into N layers by the rule 
of concentric semi-ovals of radius ri=exp(i*hs-
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Figure 4 – The triangulation of the calculated area refined near the measuring line

Figure 5 – Triangulation of the relief surface

1)/α, where i is the number of a concentric semi-
oval, hs=ln(1+a*α)/N is a grid step on radius in 
the logarithmic coordinates, α is the coefficient 
of irregularity of the grid. Then thickness of the 
i-th layer will be ri-ri-1. Then the massif of nodes 
placed on for each layer is defined. By the tri-
angulation method the set of triangles satisfying 
Delaunay condition is formed for the given set of 
nodes. This condition allows to generate a set of 

triangles which are whenever possibly close to the 
set of equilateral triangles. Though in mathemati-
cal packages the functions realizing Delaunay’s 
triangulation are described, we elaborated the al-
gorithm which is much simpler than the common 
algorithm, because we takes into account features 
of our grid, namely, its layered structure and loga-
rithmic expansion with distance from the axis of 
the calculated area. 
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Calculated parameters of the algorithm are as fol-
lows: L is the distance between center of side semicir-is the distance between center of side semicir-distance between center of side semicir-
cles of an oval; a is the maximal radius of semicircles 
of an oval; N is a quantity of layers of the grid; α is a 
coefficient of irregularity of the grid. The higher the 
coefficient of irregularity is, the more is a difference 
between the size of internal and external triangles. 
The program generates a set of nodes and triangles 
which further are used to solve an integral equation. 

Numerical results

Series of numerical experiments have been made 
to define acceptable parameters of the grid (Figures 
6, 7, 8), and comparison of the results for two algo-), and comparison of the results for two algo-
rithms of grid’s construction are provided (Figures 
9, 10).

Impact on the triangulation of the irregularity pa-
rameter α, number of layers �, the radius of semi�α, number of layers �, the radius of semi�, number of layers N, the radius of semi-
circles of an oval a and length L have been analyzed. 
Number of nodes and triangles depend on these pa-
rameters and are determined after triangulation. Cal-
culations are made with parameters α in the range 
1.0÷16.0, N changes in the range 10÷100, parameters 
of a and L are assigned as a in 0.5÷2.0, L = 2·a.

Numerical experiments are executed for mod-
els with the negative and positive relief shapes, with 
sharp and smooth slope angles, also for a wavy shape 
of a relief. Source electrode is located in the origin 
of the coordinates. In Figure 9 curves of apparent re-
sistivity are constructed for a ground surface relief 
in the shape of hemispherical convexity with smooth 
slope angles for different calculation parameters. An 
asterisk indicates the position of the current source 
electrode.

Numerical experiments show that the most ac-
ceptable parameters of calculations provide a suffi-
cient condensation of the grid at the proximity of the 
measuring line, and the sufficient length of this line: 
at L=2·a. The most admissible values are the follow-
ing: α – not less than 8.0; N – not less than 20. At the 
same time the 20-layer grid is formed of triangles, 
with number of nodes is equal to 1834 and number 
of triangles is equal to 3416. Then the computational 
domain has been made wider by increasing parame-
ter a in the interval [1, 2.]. It turns out that changes of 
curves of apparent resistivity are within 0.6%. How-
ever, for every value of relief slope angles it is rec-
ommended to determine admissible parameters anew 
by making refinements of the grid and comparing the 
results.

Calculated curves of apparent resistivity for 
models of a ground surface relief for the negative 
and positive shapes in the form of hemispherical 
(semicircular) concavity and convexity for dif-
ferent slope angles α = 30, 45, 60 ° are given in 
Figures 10, 11, an asterisk indicates the position 
of the current source electrode. It follows from 
numerical experiments that values of maxima 
(minima) of the apparent resistivity curve con-
siderably increases (decreases) with increase of 
a slope angle.

Numerical results obtained for the same relief 
form for two type of grids has been compared with 
number of nodes close each other. For the grid with 
triangulation on relief with sinusoidal shape and 
slope angle 60 ° we use values of parameters L=5, 
a = 2.5, α =8.0, N=20. In those parameters 20-layer 
grid has 2170 nodes. 

The main parameters for the grid refinement only 
in the vicinity of the source electrode are the num-
ber of divisions along the radius and the angle [11]. 
Calculations on this grid are made on 20-layered grid 
with 2000 nodes. 

Calculated apparent resistivity curves for two grid 
types are compared in Figures (12, 13). An asterisk 
indicates the position of the current source electrode. 
It is seen that for the grid refined only near source 
electrode non-physical oscillations appear, which are 
related with coarse grid away from the source elec-
trode. Satisfactory results for this grid were found 
only with number of nodes equal to 8640. So, this 
kind of grid leads to the consumption of large ma-
chine resources. At the same time, results which are 
taken by mentioned above triangulation algorithm 
gives physical reliable curves of sounding with num-
ber of nodes above 2000.

Then we have made numerical simulations to 
check influence of other parameters. When the 
parameter a changes in the interval from 1 to 2, 
the relative change of apparent resistivity is not 
more than 0.6%. At the same time, maximal rela-
tive difference between apparent resistivity cal-
culated for N = 30 and N = 90 is 2.5%. Changes 
of N between 90 and 100 is followed by chang-
es of apparent resistivity not more than 0.5%. 
Changes of α between 8 and 16 yield to relative 
difference of apparent resistivity not more than 
0.2%. These mean, that for this relief form and 
length of measurement line with slope angle ≤ 
20̊ admissible calculation parameters are: a = 1, 
α=8, � = 30.
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Figure 6 – The shape of the ground surface relief and curves of apparent resistivity:
1 – the solution obtained for parameters N=10, α=1.0, f=372 k=660;

2 – the solution obtained for parameters N=20, α=8.0, f=1834 k=3416;
3 – the solution obtained for parameters N=40, α=16.0, f=8716 k=16718

1 – slope angle α = 30°; 2 – slope angle α = 45°; 3 – slope angle α = 60°

Figure 7 – Curves of apparent resistivity for the model of the surface with negative shape



10 Numerical aspects of the adaptive computational grid in solving the problems ...

International Journal of Mathematics and Physics 9, №2, 4 (2018)

1 – slope angle α = 30°; 2 – slope angle α = 45°; 3 – slope angle α = 60°

Figure 8 – Curves of apparent resistivity for the model of the surface with positive shape

Figure 9 – The shape of the simulated ground surface and curves of apparent resistivity  
which are taken with different algorithms of grid’s construction:  

1 – by grid adapted to source electrode, 2 – by grid with triangulation adapted to measuring line
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Calculations are made for surfaces with given 
analytical form. Such method of assigning a func-
tion of the relief is very comfortable for simulations. 
However, in practice, the relief parameters are deter-
mined by field experiments. In electrical tomography 
method the relief is determined by the profiling step 
(distance between electrodes) and heights of measur-
ing electrodes which are placed along sounding area. 
This definition of the relief allows creating a table 
of values of the height function. The heights corre-
spond to the values of the function – zj (j=1..k), and 
the corresponding values of the argument – xj, can 
be calculated through the values of the step along the 
profile. For approximation of that tabulated function 
the interpolation methods are applied. 

For construction of computational grid on the 
arbitrary relief we considered two methods of inter-
polation of the relief surface: based on spline func-
tions and on radial basis functions (RBF) [14]. Cal-
culations are performed for different parameters of 
grid (number of nodes has been equal to 4147, 5222, 
7155, 8044). The big advantage of RBF interpola-
tion method is its computational efficiency com-
pared with the spline interpolation method. For ex-
ample, simulation on the grid with number of nodes 
f=7155 on a computer with processor Intel Core 
i7-4700, frequency 2.40 GHz, 16 GB RAM , takes 
900-1000 seconds for spline interpolated functions, 
while calculations with RBF method take 120-140 

seconds. Note that the calculation time depends on 
relief form also.

Conclusion

Interpretation of EIT data without taking into ac-
count influence of the relief form can give pseudo 
anomalies. We described here numerical method to 
compute the field and curves of apparent resistivity 
for a homogeneous medium with relief boundary 
based on the potential theory. Problem is reduced to 
the solution of an integral equation. The main feature 
of the method is its high accuracy and efficiency in 
calculations of the field for three�dimensional geom-
etry of the relief and for medium with several inner 
contact boundaries [15]. We described here results of 
that method applied to the relief of simple 2D forms. 
Our calculations show that use of grid with triangula-
tion gives the same results as a grid constructed with 
a refinement at the vicinity of the source electrode. 
However, due to the refinement at the vicinity of the 
source electrode and measuring line, the grid with tri-
angulation is more efficient and allows one to calcu-
late the function of apparent resistivity with relatively 
small number of nodes – approximately above 2000.

The data obtained in numerical experiments are 
basis for further research and for definition of the in-
fluence of relief forms on the distortion of apparent 
resistivity curves.

Figure 10 – The shape of the simulated ground surface and curves of apparent resistivity are taken  
with different algorithms of grid’s construction:  

1 – by grid adapted to source electrode, 2 – by grid with triangulation adapted to measuring line
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