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Abstract. Information entropy and fractal dimension of a set of physical values are usually used us 
quantitative characteristic of chaos. Normalization of entropy is a well-known problem. This work is 
devoted to develop a method to do this. In the work proposed criteria for self-similarity of information 
and informational entropy. We have defined normalized values of information (I1 = 0.567) and 
informational entropy (I2 = 0.806) as fixed points of probability density function of information and 
informational entropy. Meaning of these values is described as criteria of self-similarity of fractals and 
chaotic signals with different dimensions. We have shown that self-similarity occurs if normalized 
informational entropy S belongs to the ranges [0,I1), [I1,I2), [I2,1), that corresponds to topological 
dimensions from 1 to 3 of quasi-periodic, chaotic, stochastic objects. Validity of these findings has been 
confirmed by calculation of entropy for hierarchical sets of well-known fractals and nonlinear maps. 
These criteria can be applied to a wide range of problems, where entropy is used. 
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Introduction 
 
Rapid development of contemporary 

technologies leads to necessity of study of physical 
processes in nanocluster materials, laws typical for 
microwave chaotic signals, neural networks, etc. 
Scale invariance is the common property of such 
complex processes and objects. Taking into account 
this property we can neglect using of physical 
values with given dimension (for instance, 
dimension corresponding to length of an object). 
Local properties of scale invariance are self-
similarity (similarity factor is equal on different 
variables) and self-affinity (similarity factors are 
different on different variables). Self-organization of 
matter and motion is also a common property of 
different processes and can be represented as 
transition from chaos to order in an open nonlinear 
and non-equilibrium systems. So, we shall consider 
invariant properties of such chaotic processes. 

Generally, fractal dimension and informational 
entropy measured for physical processes are 
quantitative characteristics of chaos [1, 2]. 

Theoretical conclusions describing behavior of 
entropy in chaotic systems are known. According to 
the Prigozhin Theorem [3], the first derivative of 
informational entropy by time decreases to its 
minimum at self-organization in a system. In case 
energy of system is constant, total entropy of the 
system decreases according to the Klimontovich 
Theorem [4]. Results of study of entropy can be also 
applied for the description of processes of controlled 
self-organization [5]. 

Recent significant researches are devoted to 
problems of the theory of informational entropy and 
its applications. For example, baryon density 
perturbations are studied from the point of view of 
information theory in [6] by use of a logarithmic 
measure of information. In [7], information entropy 
is used to describe seismic vibrations. Cell entropy 
is normalized to entropy corresponding to radial 
oscillations. The paper [8] is devoted to the 
importance of choosing information measures for 
analyzing complex structures. It is noted that 
informational measures are simply inadequate for 
determining meaningful relationships among 
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variables within joint probability distributions. 
Results of this works reflect a fundamental 
importance of choice a universal normalization of 
information entropy. 

Method for accurate calculation of universally 
normalized entropy of a non-equilibrium system is 
not realized yet. The mentioned theorems do not 
provide answers the questions: what is the minimum 
value of entropy production, how entropy decreases 
at self-organization? Relation between entropy 
criterion of self-similarity and fractal dimension 
characterizing corresponding chaotic processes is 
not quite clear also. In [9], solution of such 
problems by normalizing the Shannon informational 
entropy to the Renyi entropy is suggested. However, 
order of the multifractal moment is determined from 
experiment. The purpose of this work is to search 
for answers to these questions without involving 
empirical constants. 

 
Informational and entropic criteria of self-

similarity 
 
Concept of information is often used in such 

branches of science as cybernetics, genetics, 
sociology, etc. As usual, considered systems are 
open systems. Development of methods used for the 
description of such systems stimulates the necessity 
for generalization of concept of information. As 
usual, open systems are considered as systems 
exchanging with external environment by energy, 
matter and information. 

Actually, a complex object is characterized by 
its main properties. Information I(x) for statistical 
realization of a physical non-equilibrium value x is 
greater than zero. Let us designate probability of 
realization of x as P(x). So, quantity of information 
can be expressed as 

 
   xPxI ln .                     (1) 

 
Information is a value which can be used in 

different areas, but Eq. (1) corresponds with all of 
them. 

By definition, mutual information transmitted 
through a communication channel with 
characteristic x = x(t) is determined by difference 
between Shannon one-dimensional entropy and 
conditional entropy [10] as 

 
     yxSxSyxI |;  ,              (2) 

 

where y(t) is a characteristic of receiver. 
Unconditional Shannon entropy is defined as 
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where P(xi) is expectancy of hitting of variable x in 
the ith cell with relative size δ. Conditional entropy 
S(x|y) can be written as 
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where P(xi|yj) is conditional probability. Mutual 
information is nonzero only in presence of 
correlations between quantities x(t), y(t). For the 
description of dynamic systems, we can accept 
y(t) = x’(t), i.e. the derivative of x(t) is considered as 
a second variable. 

Instead of one-dimensional Shannon entropy 
S(x) we can use two-dimensional summarized 
entropy S(x,y) and rewrite Eq. (2) as 

 
      0|,|  yxSyxSyxI , 
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where P(xi, yi) is probability of hitting into cells with 
equal sides δ of phase space (x, y). We use the 
designation I(x|y) to emphasize the role of 
conditions in definition of information, but not of 
correlations as in Eq. (2). 

Using of S(x,y) instead of S(x) provides better 
condition for positivity of conditional information 
I(x|y) > 0, because S(x,y) > S(x) always. In this 
meaning, Eq. (5) corresponds to greater noise 
immunity than Eq. (2). Normalizing of two-
dimensional information and entropy to the value of 
summarized entropy, from Eq. (2) we have 

 
    1|~|~  yxSyxI ,   

 
     yxSyxIyxI ,/||~  ,   

 
     yxSyxSyxS ,/||~  .            (6) 
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This is a convenient ratio for analysis of 
probabilistic processes written as a law of 
conservation of conditional information and 
entropy. It is from Eq. (4), (5) follows that 
informational entropy is the average value of 
information. Therefore, we shall use Eq. (2) as the 
basic definition of information. 

According to Eq. (3) entropy calculated via 
probability density f(x) = dP(x)/dx tends to infinity if 
x is a continuous value. For definition of scale-
invariant regularities we must use a new approach at 
the description of informational phenomena. 
Because of this fact we can consider information as 
a defining independent variable. Information can be 
used for the description of statistical processes. So, 
we try to describe new properties of information 
with taking into account that information is a scale-
invariance value. 

Therefore, according to Eq. (1) probability of 
realization of information P(I) can be described as 

 
  IeIP  .                          (7) 

 
Mathematical expression for probability P(I) 

and probability density f(I) can be written as 
 

  10  IP ,   I0 ;   
 

 
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
I
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From Eq. (7), (8) follows that f(I) = P(I) = e-I. It 

means the equality of probability function P(I) and 
probability density function of information f(I). 
Information calculated via Eq. (1) is a scale-
invariant value. So a law of distribution is the same 
for both whole object and its part. Informational 
entropy S(I) of distribution of information is a mean 
value of information in an ensemble: 

 

     
 
I

IeIdIIIfIS 1 .      (9) 

 
Let us take into account that information can be 

normalized to unit. So, 1 ≥ S ≥ 0 at 0 ≤ I ≤ ∞. We 
obtained a finite value of entropy of a continuous set 
by introducing a measure. We accepted a probability 
density of information as a measure and as a result 
we get Eq. (9). This result is valid for information of 
any nature (social, cyber, genetic, etc.) and for 
different methods (mutual, conditional) for its 
determination. 

We use information I(f(I)) and entropy S(I) as 
characteristic functions. Fixed points of I (f(I) and 
S(I)) can be described by the following 
mathematical expressions [11]: 

 
 IfI  ,  IeI  ,  567.01  II ,      (10) 

 
  IIS  ,    IeI I  1 ,  806.02  II .  (11) 
 
I2 is the minimum value of normalized 

multidimensional entropy achieved at transition to 
self-similarity. Normalized entropy of chaotic 
objects in a three-dimensional space (x,y,z) can be 
defined as 

 
          zSySxSzyxSzyxS  /,,,,~ ,  (12) 

 
because its maximal value is equal to sum of 
entropies of components. Therefore, 

 
  1,,~

2  zyxSI .                 (13) 
 
I1 is conveniently defined for conditional 

information of a geometric object as 
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   ySyxI / .                      (14) 

 
Self-similar value of information (I1) is the 

minimal value of normalized one-dimensional 
entropy of two-dimensional object: 

 
  21

~ IxSI  ,       yxSxSxS ,/~  .    (15) 
 
Transition to chaos and to statistical regularities 

in one-dimensional case is characterized by the 
range 

 
  1

~0 IS   ,        /1ln/~ SS  ,   (16) 
 

where S(δ) is normalized entropy of Shannon 
segmentation by the relative scale of measurement 
δ. It is known from the theory of multifractals [12] 
that S(δ) is also an information dimension of a set 
containing a measure. Therefore, we can use I1 and 
I2 as boundaries for separation of fractional parts of 
dimensions characterizing self-similar sets with 
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topological dimensions d = 1 ([0,I1)), d = 2 ([I1,I2)), 
d= 3 ([I2,1)). 

 
Results and Discussion 
 
It is necessary to verify validity of criteria of 

self-similarity for information I1 and entropy I2 in 
natural phenomena. Fractal objects and processes 
are characterized by a universal property of scale 
invariance. However, the main characteristic of such 
objects which is fractal dimension cannot be 
unambiguously defined from experimental data, 

because results of application of different methods 
(cellular, inner, etc. dimensions) are noticeably 
different. Therefore, in the beginning, we shall use 
models of 17 geometric fractals with known 
dimensions from 1.26 to 2.0 [12,13]. 

All studied prefractals (hierarchical generations) 
with number of iterations equal to n contained the 
same number of points N = 218 and inscribed in 
squares with the same dimensions. Information 
entropy of a prefractal was determined via 
probabilities of appearing of points in square cells 
with relative scale δ = 10-3. 

 
 

 
Figure 1 – Normalized information entropy (conditional information)  

 xS~  (a) and  yS~  (b) of fractals with dimensions D. 
 

 
We have chosen n = 6, δ = 10-3 for all fractals 

for which the self-similar normalized values of 
entropy (12), (14), (15) can be considered 
independent on n, δ with an error less than one 
percent. 

Figure 1 shows values of normalized 
information entropy of 17 fractals with indication of 
their abbreviated names corresponding to accepted 
in [12,13]. The normalized one-dimensional entropy 
(conditional information) for all fractals is less than 
I2 and tends to the self-similar value I1 with 
increasing dimension D0. Choice of S(x) or S(y) 
corresponds to non-fractal (n = 0) length of x or y. 
Conditional information depends on two variables, 
so, the range [I1,I2) corresponds to self-similarity of 
information. 

 
 
 
 

To verify the existence of all self-similar 
entropy ranges (13), (15), (16), we use nonlinear 
maps with chaotic realizations. The one-dimensional 
logistic map and the two-dimensional Henon map 
are described by the Equations [14] as 

 
 iii yryy  11 ,                   (17) 
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where r, a, b are parameters. Let us use a new three-
dimensional mapping with parameters R, *R ,γ 
written as 

 



94 Informational and entropic criteria of self-similarity of fractals and chaotic signals

International Journal of Mathematics and Physics 9, №1, 90 (2018)



























































.1

,1

,1

*
1

*
1

*
1







R
xRz

R
zRy

R
yRx

i
i

i
i

i
i

             (19) 

 
Map (19) follows from requirement for 

nonlinearity of fractal measure with components 
x, y, z and γ = D – d, which is the difference 
between fractal and topological dimensions. 
Types of chaotic realizations of maps (17), (18) 
are known [14], therefore, Figure 2 shows only 
chaos of values of x, y, z according to system of 
Eq. (19). 

 

 
Figure 2 – Chaos of the three dimensional map (19) with parameters  

R = 0.77, R* = 1.1, γ = 0.2 - 0.57, step equal to 10-2 and initial conditions  
are x1 = 1, y1 = 1.1, z1 = 0.9. Number of samples is N = 218,  

number of iterations before attractor is imax = 103. 
 
 

Figure 3 presents normalized values of one-
dimensional, two-dimensional, three-dimensional 
information entropies corresponding to Eq. (17), 
(18), (19). We have assumed the sum of variances of 
variables as a general order parameter leading to 
bifurcations: 
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j
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222
jjj xx  , 

 
 zyxx j ,, .                      (20) 

 

Depending on the map parameters, various 
signals can be referred as quasi-regular ([0,I1)), 
chaotic ([I1,I2)), stochastic ([I2,1)). Transitions 
between these modes are possible. This can be seen 
from the examples of bifurcation diagrams shown in 
Figure 4. Crowding of lines at small values of 
dispersion (transition to chaos) is more noticeable in 
three-dimensional case than in low-dimensional 
cases. Intermittency (alternation of order and chaos) 
is frequently observed in one-dimensional case than 
in two-dimensional and three-dimensional 
dynamical systems. Thus, Figures 1 and 3 clearly 
confirm validity of information criteria for self-
similarity I1, I2. 
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Figure 3 – Normalized information entropy of the maps (17) ● – S(x)/ln(1/δ);  

(18) × – S(x,y)/S((x)+S(y)); (19) ∆ – S(x,y,z)/(S(x)+S(y)+S(z)).  
Number of samples is N = 218, scale is δ = 10-3. 

 

 
Figure 4 – Bifurcations diagrams of the maps.  

(а) – (17), r = 3.2 - 4.0; (b) – (18), b = 0.3, a = 0.5 - 1.42; (c) – (19), R = 0.77, R*= 1.1, γ = 0.2 - 0.57.  
At all cases parameter step is 10-2, initial value is xy0 = 1.  

Total number of samples is N = 218, number of iterations before attractor is imax = 103. 
 
 
Conclusions 
 
Informational and entropic criteria for self-

similarity of fractals and chaotic signals can be 
applied to the quantitative analysis of phenomena 
with different nature. Information and entropy as 
measures of order and disorder have universal 
applicability both for natural and social phenomena. 

Attractors of dynamical systems, images of natural 
and nanotechnological objects can have a fractal 
structure. As usual, astrophysical, seismic, non-
linear radio engineering, neural, nanoelectronic and 
other signals are chaotic signals. The entropic 
criteria established in the present work are 
associated with quasi-regular, chaotic, stochastic 
processes in considerably narrower ranges than in 
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case of applying other known characteristics of 
chaos, for example, in comparison with the unit 
interval of difference between fractal and 
topological dimensions.  
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