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Abstract. All of humanity's activities are tied to fuel. Previously, it was coal, now it is oil. In order to find 
oil or coal in the earth's interior, preliminary analysis and calculations are necessary to confirm their 
existence, their size, location, type of mineral and much more. The aim of the study is to improve existing 
models of calculations for the search for minerals. To date, there are many methods and approaches to 
solving the problem, but they are not yet accurate enough. We solve the inverse problem of gravimetry, 
based on measurements of the Earth's gravitational field. At this stage, we carefully investigate the direct 
problem, without affecting the inverse. In the course of the study, we found interesting facts. Namely, the 
gravitational field on the Earth's surface with a different location of the anomaly has a very unpredictable 
result. The results of this study showed that lateral boundaries should be 30-50 times farther from the 
anomaly, with respect to the diameter of the anomaly. In addition, it reveals that the anomaly should be 
located in the middle of the area. This gives us the most plausible result.  
Keywords: gravimetry, inverse problem, gravitational field, Poisson equation. 

 
 
Introduction 
 
One of the most important ways of intelligence 

and analysis of mineral deposits associated with 
the detection and identification of gravitational 
anomaly [1].  Thus based on gravimetric methods 
identifies various deviations of the gravitational 
potential, to indicate the presence of any 
heterogeneities in the considered crustal thickness.  
Interpretation of the obtained results implies the 
solution of any inverse problems of gravimetry 
(see, for example [2, 3, 4, 5, 6, 7, 8]. As is known, 
inverse problems of gravimetry are essentially 
incorrect. They not only lack the stability of the 
resulting solution to the input data, but often there 
is no uniqueness of the solution of the problem. 
One of the known optimization methods for their 
solution is assembling suggested by Strakhov [7, 
9], recently from the statistical form this method 
has been modified to a mixed one with a 
deterministic approach [3]. In this paper, a 

gradient-type method is used to solve the problem 
under consideration, which is regularizing, i.e. 
conditionally stable. Many studies of methods of 
the Newton type for the solution of the restoration 
of the medium boundary in inverse problems of 
gravimetry were carried out in [5, 6, 7, 10]. The 
purpose of this paper is to find out exactly what 
information and with what degree of accuracy can 
be restored by measuring the potential of the 
gravitational and its gradient on the surface of the 
earth. 

In this paper we consider the Poisson equation 
for the potential of the gravitational field in a certain 
region. The inverse problem is to determine the 
density of the medium on the basis of measuring the 
gravitational potential and its derivative on the 
surface of the earth. In this case, the remaining part 
of the boundary of the region under consideration is 
given the potential value, which would be observed 
in the same region in the absence of a gravitational 
anomaly. 
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Statement of the problem 
 
We will not complicate our task. We consider 

the structure of the earth in a certain section, i.e. in 
two-dimensional measurements. We will also 
consider at the initial stage that our investigated area 
has a homogeneous structure and the density is the 
same everywhere, and we know the significance of 
this density. We assume that there is only one 
anomaly in the given region. Let this anomaly also 
have the form of a rectangle. Let us know the 
location and its form of anomaly. We do not know 
its density. 

It is necessary to determine the density of the 
anomaly. To find out what kind of material it is. 

There are gravimetric values (values of the 
gravitational field) at the boundaries of the region. 

Let Ω (a × b) be a rectangular domain of size a × 
b. The anomaly has the shape of a rectangle and it is 
located in the some interval �� � � � ��  (the 
length at the surface of the earth), �� � � � �� (the 
depth of the considered earth cut, with the positive 
direction of the OZ axis pointing downwards, so 
that it is convenient to count with positive values of 
z). The basic gravitational field equation described 
by the following formula: 

 
△ φ = -4ρπG, 

 
where φ is the field potential; G, π are constants; ρ is 
the density of matter; △ is the Laplace operator. 

We denote by △ �� = ������ the potential of 
a gravitational field without anomaly. Here �� is the 
density of the considered region without anomaly. 

The size of the considered region must be much 
larger than the size of the anomaly, in order that the 
potential difference on the boundary of the region be 
zero. The potential of the anomaly surface has the 
form of a "cap", and completely covers the anomaly. 
Thus, the potential of the anomaly field extends 
beyond the boundary of the anomaly. If the potential 
difference is not zero at the boundary of the region 
under consideration, then we artificially expand the 
area under investigation, so that the dimensions are 
sufficiently large in relation to the anomaly under 
investigation. We can expand in depth and width. 
The upper part of the earth's boundary remains 
unchanged. We denote the extensible boundary  
by Γ. 

Thus, we calculate the difference  
 

� � ∆�(�, �) = ����(�, �)�,
∆��(�, �) = �����(�, �)�. 

 
We obtain  
 

∆η(x, z) = ����(�, �)�, 
there 

 

� η(x, z) = φ(x, z) � ��(x, z),
�(�, �) = �(�, �) � ��(�, �). 

 
The value of the boundary conditions along the 

boundary Γ is zero 
 

η(x, z)|Г = 0. 
 

Hence, we have obtained that 
 

�(�, �) = �0, �������  �,
ψ�, ��          �. 

 
Thus, we reduced the original problem with 

nonzero boundary conditions to an equivalent 
problem with zero boundary conditions (this method 
of reducing the problem is called the perturbation 
method). This greatly facilitates the process of 
solving the problem. 

Now the statement of the problem has the form: 
 

∆ η(x, z) = ����(�, �)�,                    (1) 
 

η(x, z)|Г = 0,                            (2) 
 

�(�, z�)|z� = �� ≠ 0,             (3)  
 

��(�,�)
�� |z� = �� ≠ 0,                      (4) 

 

�(�, �) = �0, �������  �,
ψ�, ��          �.                (5) 

 
The problem (1) – (3) is direct problem for the 

Poisson equation with boundary conditions. The 
function η (x, z) is the potential of the gravitational 
field is differentiated twice in x, and twice in z. 
Therefore, to solve this Poisson equation, we need 
four boundary conditions. The equations (2) and (3) 
provide us with four boundary conditions (along 
four boundaries). That is, we can solve a direct 
problem. Find the potential of the field at any point 
in the region under consideration, with given  
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conditions on the boundary, we know the value of ψ 
(x, z) is the difference in the densities of the 
inhomogeneity and the region under consideration. 
Unfortunately, we do not know the value of the 
density of the inhomogeneity! Therefore, it is 
necessary to insert into the equation (1) the value of 
ψ (x, z) from equation (5). If ψ (x, z) = 0 outside the 
Ω, then η (x, z) = 0 outside Ω. 

We still have equation (4). The value of the 
gradient from the potential function of the 
gravitational field. To solve a direct problem this 
condition is superfluous, that is, we solve a direct 
problem without it. To solve the inverse problem, 
we need condition (4). 

We reduce the inverse problem to the 
optimization problem. We add the functional. Since 
we do not know the value of ��, we will select it 
artificially. It must be chosen in such a way that for 
the solutions of the direct problem the obtained 
answer η (x, z), when substituted into equation (4), 
turns it into an identity. Then the chosen  �� is the 
solution of the inverse problem. Such a method is 
laborious, perhaps even not feasible, because we 
may never be able to pick up  �� so as to accurately 
"get" into η�. In such cases, the optimization one 
replaces the original task. 

The optimization problem obtained as follows: 
Instead of checking condition (4), we will minimize 
the functional 

 

I(ψ�) = � ���(���)�� �
���

− η��
� dx → min.�

�    (6) 

 
That is, we will select �� in such a way that the 

difference between the desired value of η (x, z) and 
η� is minimal. 

We will solve the problem with the aid of the 
gradient method. A gradient method involves the 
use of a derived functional. It is necessary to 
calculate the derivative of the functional. We use the 
definition of the Gato derivative for the functional. 
The Gato derivative has a sufficient set of properties 
in order to use it in the gradient method when 

calculating the inverse gravimetric problem for the 
model statement. 

The Gato derivative has the following form: 
 

I�(ψ�) = ���������.
Ω

 

 
 
Results and discussion 
 
The formulation of the problem reduced to the 

solution of the direct and inverse problem. At the 
first stage, we must study the direct problem well, 
check for the presence of deviations and 
inaccuracies in the various locations of the anomaly 
within the investigated region. We analyze the 
change in density to the upper value of the 
gravitational field. All calculations made on the 
software product Comsol Multiphysics 5.2. This 
software product contains all the necessary 
numerical calculations. The obtained solutions 
based on the finite element method. This method is 
the most accurate and universal. The advantage of 
Comsol Multiphysics 5.2 is in the speed of solving 
and providing a visual solution of the problem. 
Unfortunately, it is difficult to solve the inverse 
problem on Comsol Multiphysics 5.2, but it is quite 
suitable for solving a direct problem. 

The figures below show the last upper layer of 
the location of the anomaly. In Figure 1 a) you can 
see a graphic representation of the location of the 
anomaly, b) a graph of the distribution of the 
potential of the gravitational field on the earth's 
surface, c) the distribution of the derivative of the 
gravitational potential for a given location of the 
anomaly. Since the graphs are symmetrical about 
the central location of the anomaly, we will consider 
only three variants of the location of the anomaly 
(the anomaly shift occurs from left to right to the 
central location). Since we need to give three figures 
for one arrangement, we decided to design them as 
Figure1 (under one number). 
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a) The location of the anomaly b) The potential of the gravitational field

c) The gradient of the potential  of the gravitational field on the earth's surface

Figure 1 – Last upper layer of the location of the anomaly

The results of solving a direct problem showed 
the following. With a different location of the 
anomaly in the study area, the upper boundary of the 
gravitational field did not change as expected. 
Namely, if the anomaly was located closer to the 
lateral boundaries, then the symmetry of the 
resulting parabola was greatly changed, even 
arched. In addition, the peak of the parabola did not 
lie exactly above the center of the anomaly, but 
shifted. Thus, introducing distortion and complexity 

for the reverse restoration of the location of the 
anomaly. It is connected with the zero boundary 
conditions, which we asked beforehand, expanding 
the region. Thus, the compiled mathematical model 
does not fully describe the process. That is, initially 
we did not expect an anomaly to be located near the 
border. The anomaly should be located strictly in 
the center of the region. The greatest curvature 
obtained closer to the surface of the earth. The 
deeper the anomaly, the less the curvature.
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a) The location of the anomaly b) The potential of the gravitational field 
 

 
c) The gradient of the potential  of the gravitational field on the earth's surface. 

 
Figure 2 
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a) The location of the anomaly b) The potential of the gravitational field 

 

 
 

c) The gradient of the potential of the gravitational field on the earth's surface. 
 

Figure 3 
 
 
Conclusion 
 
The purpose of this article was to show that 

when studying a region with a subterranean 
anomaly, one should not place an anomaly close to 
the lateral boundaries. This gives incorrect results 
associated with zeroing the boundary conditions. 
These results will be very useful in the further 
solution of the inverse problem, since in solving 
inverse problems we will need to solve the direct 
problem many times. If there are inaccuracies in the 
direct problem, then this will necessarily affect the 
results of the inverse problem. We need to most 

accurately investigate the direct problem in order to 
exclude in advance the errors of the direct problem. 
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