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Computer modelling of distributions processes  
on vacancy nanoclusters depth in the heavy targets irradiated with ions 

 
 

Abstract. Creation new materials with unique properties is one of priority researches areas, both in 
physics, and in technique. The study of small metal particles properties from atoms hundreds and 
thousands is of great interest by their possible usage as materials or surface nanostructures. The fact that 
nanomaterial properties considerably depend on the particles properties making them is undoubted. The 
free clusters internal structure research could play a key role in an explanation of their physical or 
chemical features. Work is assigned to obtaining the regularities arising when modeling radiation 
processes in the heavy ions irradiated with various ions. The regularities arising when calculating 
cascade and probabilistic functions depending on particles penetration depth, interactions number are 
found. Real areas finding the radiation defects concentration result are defined, calculations for various 
flying particles and heavy targets in the energy range 100 - 1000 keV are made. Calculations results are 
presented in the schedules and tables form. 
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Introduction 
 
Particles interaction problems with substance 

and radiation defects generation at substance 
radiation ions have devoted many works [1-5]. 
Application of the cascade and probabilistic method 
(CPM) in various fields of physics with usage the 
simplest cascade and probabilistic function (CPF) is 
described in works [6, 7]. CPF usage taking into 
account energy losses of for various charged 
particles within CPM is shown in work [8]. This 
work is performed within CPM which essence 
consists in receiving and further CPM usage. In this 
work CPF it is used for receiving calculation 
models on primary beaten-out atoms ranges and 
vacancy type nanoclusters concentration. Passing 
ions through substance is a difficult task as during 
creation physical, and mathematical models. A set 
of the flying particles types and targets of 
Mendeleev's Periodic system represents a huge 
elements number [9-14]. At the same time it is 

possible to consider various situations when the 
flying particles mass number are less than a target 
atomic number, it is commensurable with a target 
atomic number and a case when the flying particle 
atomic weight is more or much more target atomic 
number. Elements are classified by us on easy and 
heavy by element density. In work interaction 
process of the flying ions, various on density, with 
heavy ions is considered [15, 18]. 

 
Main results 
 
For receiving calculation models of primary 

beaten-out atoms ranges and radiation defects 
concentration it is necessary to receive analytical 
expression of the cascade and probabilistic 
functions (CPF) making sense to probability that the 
particle generated at h’ depth, will reach h depth 
after n impacts number. We have used CPF taking 
into account energy losses for ions, has the 
following appearance [8]: 
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where h’,h – generation and registration depths of a 
particle respectively, n– interactions number, E0 – 
primary particle initial energy, l=1/0ak, 0, a, k, E0 
– the approximation parameters entering the 
following recurrence relation [12-18]: 
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Approximating coefficients selection results are 
presented in tables 1, 2. Approximations selection 
results are presented in the figure 1.  

 
 

Table 1 – Approximating parameters for silicon in silver 
 

E0 08 a E0` k 
1000 0,00084229 0,00028854 1,1432 2440,1 0,999
800 0,28096 0,089117 1,0067 2653,6 0,999
500 0,014611 0,0034919 0,85506 3574,9 0,999
200 0,036748 0,0084184 0,34591 3755,6 0,999
100 0,11412 0,02743 0,16292 3757 0,999

 
 

Table 2 – Approximating parameters for silver in silver 
 

E0 010 a E0` k 
1000 0,21185 0,16977 1,0087 7528,6 0,998
800 0,59507 0,47916 0,71531 6677,5 0,997
500 0,76419 0,37929 0,7438 11227 0,997
200 2,5751 2,4126 0,13503 4694,8 0,999
100 6,533 10,542 0,035424 2140,5 0,999
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Figure 1 – Approximation of the cascade and 

probabilistic function modified section for Indian in 
gold:Е0=1000(1), 800(2), 500(3), 200(4), 100(5) keV. 

Points – settlement the dependences of section on depth, 
continuous lines – approximation 

 

CPF Calculations are executed on the following 
formula: 
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CPF calculations results depending on 

interactions number and particles penetration depth 
are presented in figures 2,3. 
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Figure 2 – CPF dependence on interactions number  

for the titan in iron for E0=1000 keV h=0,0001;  
0,0002; 0,0003 cm (1-3)  
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Figure 3 – CPF dependence for aluminum in tungsten from interactions number 

 at Е0= 1000 keV and n=153, 787, 1804, 3496, 6548, 17108  (1-6) 
 
 

When calculating CPF depending on 
interactions number and particles penetration depth 
and also vacancy type nanoclusters concentration 
needs to find real result finding area. We will note 
the main regularities when calculating CPF 
depending on interactions number arising when 
result finding area for various flying particles and 
heavy targets [11-15].  

1. With initial energy reduction (the flying 
particle and a target same) with the same 
penetration depth the area of result is displaced to 
the small depths area.  

2. For heavy targets the area of result is 
displaced to the small depths area, the area left 
border decreases more slowly, the right border 
sharply decreases. 

3. With increase in observation depth the area of re-
sult is narrowed and displaced to the small depths area. 

The regularities arising when calculating CPF 
depending on penetration depth following  
[18-21]: 

1. With increase in atomic weight of the flying 
particle the step for calculation increases, reaching 
several hundred and even thousands. 

2. With a big atomic weight of the flying 
particle and target the counting duration 
considerably increases and selection of borders 
becomes complicated. 

3. With increase in observation depth the area of 
result is displaced to the big depths area and 
narrowed. 

4. With initial particle energy reduction the area 
of result is displaced to the big depths area and 
narrowed. 

Radiation defects concentration at ionic 
radiation is calculated on the following formula [8]: 
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where E0 – initial energy of the flying ion, Ed – 
threshold energy of shift, Ec– energy of the primary 
beaten-out atom (PBOA) at which the amount of the 
displaced atoms equals to atoms number Nd, being 
in a spontaneous recombination zone, E2max– the 
greatest possible energy acquired by atom,  n h   – 

CPF function in modified type,  1 h   and 
 2 – shift run an ion – and atom - atomic shifts  
[15, 22]. 

Calculations results on distributions at the 
vacancy  nanoclusters depth are presented in figures 
4-6.
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Figure 4 – Dependence on concentration of cascade areas on depth  

at copper radiation by aluminum ions:  
Е0= 500 keV, Ес= 50 (1), 100 (2), 200 (3) eV 
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Figure 5 – Dependence of radiation defects concentration 
on depth at ionic radiation for carbon in Germanium (1), 
boron in Germanium (2) and fluorine in Germanium (3); 

Ес=50 keV; Е0= 1000 keV 

Figure  6 – Dependence of the radiation defects 
concentration on the depth  

at ion irradiation for nitrogen in germanium  
at Ес=50 keV; Е0= 1000 (1), 800 (2), 500 (3) keV 

 
 
Conclusion  
 
Thus, in the work an approximation expression 

for the interaction cross-section is selected and the 
approximation coefficients are found. Cascade-
probability functions are calculated as a function 
of the interactions number and the particles 
penetration depth, the defects concentration in 
heavy targets. The regularities in the result domain 
behavior for calculating cascade-probability 

functions, the spectrum on primary-knocked-out 
atoms, and the radiation defects concentration of in 
heavy targets irradiated by ions are obtained. It 
could be seen that as the atomic number of the 
target increases for the same incident particle, the 
value of the function at the maximum point 
increases insignificantly, the depth values 
decrease, that is, in the heavier target of the 
vacancy clusters, more is formed, especially in the 
near-surface region. 
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