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On numerical simulations of the 1d wave equation with  

a distributional coefficient and source term 
 
 

Abstract. In this note, we illustrate numerical experiments for the one-dimensional wave equation with 
�-like (delta like) terms. Our research is connecting the theory with the numerical realisations. By using 
results on very weak solutions introduced by Michael Ruzhansky with his co-authors, we investigate a 
corresponding regularized problem. In contrast to our expectations, the experiments show that the 
solution of the regularized problem has a “good” behaviour. Indeed, numerical experiments show that 
approximation methods work well in situations where a rigorous mathematical formulation of the 
problem is difficult in the framework of the classical theory of distributions. The concept of very weak 
solutions eliminates this difficulty, giving results of correctness for equations with singular coefficients. 
In the framework of this approach (very weak solutions), the expected physical properties of the equation 
can be reconstructed, for example, the distribution profile and the decay of the solutions for large times. 
Finally, we give a number of illustrations. 
Key words: wave equation, numerical experiment, very weak solutions, distributional coefficient, 
singular source term, regularized problem, decay of solutions.  

 
 
Introduction 
In this paper, we follow the results of the paper 

[4] and study the Cauchy-Dirichlet problem for the 
1D-Wave Equation  

 
 

(1)                                 

��
�
��
���� �(�, �) � �(�)���� �(�, �) � �(�, �), (�, �) ∈ [0, �] × [0,1],

�(�, 0) � 0, � ∈ [0, �],
�(�, 1) � 0, � ∈ [0, �],

�(0, �) � ��(�), � ∈ [0,1],
���(0, �) � ��(�), � ∈ [0,1].

 

 
 
The notion of very weak solutions has been 

introduced in [GR15] to analyse second order 
hyperbolic equations. In [3] and [5] Ruzhansky and 
Tokmagambetov applied it to show the well-
posedness of the Landau Hamiltonian wave 
equations in distributional electro-magnetic fields. 
Also, in [2] were investigated very weak solutions 
for an acoustic problem of wave propagation 
through a discontinuous medium. 

In this paper, we allow the coefficient �(�) and the 
source term �(�, �) to be distributional in �. One of the 
interesting cases is when �(�) � 1 � �(� � ��) and 
�(�, �) � �(� � ��) for some, in general, different  �� 
and ��. For more motivation, we refer to [6] – [11]. 

 
Numerical experiments 
 
We start by regularizing �(�) and �(�, �) by the 

parameter �, that is,  
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��(�) = (� � ��)(�),  �(�) = (� � ��)(�), 

 
 
by the convolution with the mollifier 
 ��(�) = 1 �� �(� �� ) , where  
 

�(�) = �
1
� e

�
(����), |�| � 1,

0, |�| > 1.
 

Here C = 0.443994 so that � �(�)�� = 1�
�� . 

Instead of (1) consider a regularized problem

 

(2)                          

��
�
��
���� ��(�, �) � ��(�)���� ��(�, �) = ��(�, �), (�, �) ∈ [0, �] × [0,1],

��(�, 0) = 0, � ∈ [0, �],
��(�, 1) = 0, � ∈ [0, �],

��(0, �) = ��(�), � ∈ [0,1],
����(0, �) = ��(�), � ∈ [0,1].

 

 
 
From [4] it follows that the problem (1) has a 

unique very weak solution. It is given by a family of 
functions ���(�, �)������. For each positive � � 1, 
the function ��(�, �) is a solution of the regularized 
problem (2) controlled by the estimate 

||��������(�, �)||�� � ��������, 

for some �>0 and � � 0, for all �, � ∈ ��.  
We put ��(�) ≡ 0, ��(�) ≡ 0, �(�) = 1 +

�(� � ��) and �(�, �) = �(� � ��). Then we get 
��(�) = 1 + ��(� � ��), ��(�, �) = ��(� � ��). 
Finally, we have the following problem to solve 
numerically

 
 

(3)                    

�
�
�
�
����

� ��(�, �) � �1 + ��(� � ��)����� ��(�, �) = ��(� � ��), (�, �) ∈ [0, �] × [0,1],
��(�, 0) = 0, � ∈ [0, �],
��(�, 1) = 0, � ∈ [0, �],
��(0, �) = 0, � ∈ [0,1],
����(0, �) = 0, � ∈ [0,1].

 

  
In the following, we demonstrate numerical 

simulations. All calculations are made in C++ by 
using the sweep method. For all simulations �� =
�� = 0.01. In all computer simulations, we use  
 

Matlab R2017b. At first, we consider the case when 
�� = �� = 0.2. In Figure 1 and Figure 2, we see the 
decay of the solution ��(�, �) with respect to the 
time � of the regularised problem (3), for � = 0.�. 

 

 
Figure 1 – In these plots, we can see the decay of the solution ��(�, �)  with respect to the time �  

of the regularised problem (3), for � = 0.� when �� = �� = 0.2. In the first plot, the time � is given by the horizontal 
axe, and the graphic of max�∈[�,�] ��(�, �) is drawn. Here, we use colours to indicate the value of the solution ��(�, �). 
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Figure 2 – In these pictures, we see the decay of the solution ��(�, �) with 

respect to the time � of the regularised problem (3), for � = 0.01 when �� = �� = 0.2. 
 
 
Now, compare the solution ��(�, �) at � = 100 

of the regularized problem (3), for several values of 
�. In Figure 3, there is given a comparison of the 
solution ��(�, �) at time � = 100�of the regularized 
problem (3), for the parameter ��at � =
0.8, 0.5, 0.3, 0.1, 0.08, 0.05, 0.03, 0.01. 

Consider the case when �� and �� are different. 
Let us start with the case��� � ��. Let ��� = 0.2 and 
�� = 10 for � = 0.01. Then for the illustrations we 
have Figure 4. 

Now, we consider the case��� � ��. Let ��� = 30 
and �� = 0.2 for � = 0.01. Then for the illustrations 
we obtain Figure 5. 
 
 

 
Figure 3 – Comparison of the solution ��(�, �) at time � = 100� 

of the regularized problem (3), for the parameter �. The graphics correspond  
to ��(�, �) at � = 0.8, 0.5, 0.3, 0.1, 0.08, 0.05, 0.03, 0.01 from top to bottom, respectively. 

 
 



31A. Altybay et al.

International Journal of Mathematics and Physics 8, №2, 28 (2017)

Figure 4 – In these plots, we see the decay of the solution ����� �� with 
respect to the time � of the regularised problem (1.3),  

for � = 0.01 when �� = 0.2 and �� = 10. 

Figure 5 – In the plots, we can see the decay of the solution ����� �� with 
respect to the time � of the regularised problem (3),  

for � = 0.01 when �� = 30 and �� = 0.2. 

Conclusion 

Numerical experiments show that 
approximation methods work well in situations 
where a rigorous mathematical formulation of the 
problem is difficult in the framework of the 
classical theory of distributions. The concept of 
very weak solutions eliminates this difficulty, 
giving results of correctness for equations with 
singular coefficients. In the framework of this 
approach (very weak solutions), the expected 

physical properties of the equation can be 
reconstructed, for example, the distribution profile 
and the decay of the solutions for large times. 
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