
© 2017 al-Farabi Kazakh National University                                    Printed in Kazakhstan

International Journal of Mathematics and Physics 8, №1, 42 (2017)

UDK 535:530.182 
 

*Davletov A.E., Kudyshev Zh.A., Mukhametkarimov Ye.S., Kissan A., Yerimbetova L.T. 
Department of Plasma Physics, al-Farabi Kazakh National University,  

Tole Bi 96, Almaty 050012, Kazakhstan  
*e-mail:askar@physics.kz 

Dispersion of electromagnetic waves in layered graphene-dielectric metamaterials 
 
 

Abstract. In this paper possibility of creating a medium based on graphene-dielectric (quartz) structures 
with a hyperbolic shape of the dispersion relation is considered. Using the Bloch theorem and the transfer 
matrix method, dispersion relations are found for hyperbolic media, consisting of periodically located 
layers of graphene and a dielectric. The transfer matrix method gives the possibility to relate the 
amplitudes of the incident and reflected electromagnetic waves at the input to the layered structure with 
the amplitudes at the output by means of propagation and transfer matrixes. The frequency dependent 
optical conductivity of graphene sheet is calculated by Kubo formula which takes into account both 
interband and intraband transitions. It is shown that when the chemical potential of graphene is increased, 
the elliptic form of the dispersion curve turns into to hyperbolic. This result is due to the fact that the 
perpendicular component of the permittivity changes its sign when the chemical potential is changed. 
Key words: hyperbolic metamaterials, graphene, dispersion of electromagnetic waves. 

 
 
Introduction 
 
Strongly anisotropic media, in which the 

components of the diagonal tensor of permittivity or 
permeability have opposite signs, are called 
hyperbolic media or hyperbolic metamaterials 
(HMM) [1]. These materials are of great practical 
interest associated not only with the comparative 
ease of their fabrication, but mostly with their 
unusual optical properties. It is known that the 
hyperbolic metamaterials, along with the negative 
refraction of light [2], can be used to overcome the 
diffraction limit [3-6], to realize optical resonators 
and waveguides at the nanoscale [7,8], to develop 
biosensor applications [9] and to enhance nonlinear 
effects [10]. In most cases, the hyperbolic 
metamaterials are obtained on the basis of a 
composition of metal nanoparticles immersed into 
dielectric media. There are two main methods for 

obtaining materials with the hyperbolic dispersion. 
In the first case, the hyperbolic response is achieved 
due to alternating layers of metal and dielectric, and 
the second is due to metal nanowires, arranged in a 
dielectric medium. 

At present, research is actively under way on the 
development of the hyperbolic materials based on a 
graphene. The graphene, which is a single layer of 
graphite, has very unique electrical, magnetic and 
thermal properties [11-13]. Electrons in the graphene 
behave like the photons in a vacuum, i.e. they have a 
zero effective mass, which leads to a linear dispersion 
law [14]. In addition, strong plasmon effects are 
observed in the graphene, which, if necessary, can be 
influenced by doping [12]. 

In this paper possibility of creating a medium 
based on graphene-dielectric (quartz) structures with 
a hyperbolic shape of the dispersion relation is 
considered (Figure 1).  

 

 
 

Figure 1 – Layout of layers of periodic structure based on dielectric and graphene 
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Optical conductivity of graphene 

The electromagnetic properties of grapheme 
sheets are characterized by the surface conductivity 
� within the Kubo formalism. In the absence of an 
external magnetic field, the surface conductivity of 
grapheme sheet is defined as a sum of the intraband 
and interband conductivities as:  
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Here ℏ  denotes the Plank constant, μ  is the 
chemical potential, γ refers to the electron-phonon 
scattering rate, ω  designates the incident wave 
frequency, k� stands for the Boltzmann constant, T 
signifies the temperature and e  is simply the 
elementary charge.  

Figure 2 displays the imaginary and real parts of 
the surface conductivity, which is normalized to 
σ� = ��

�ℏ.  

0.25   eV, 300T   K, 0.043  eV 
Figure 2 – Optical conductivity of the graphene sheet. Solid 

line: the imaginary part; dashed line: the real part.

The matrix method or the matrix transfer 
method makes it possible to relate the amplitudes of 
the incident and reflected electromagnetic waves at 
the input to the layered structure with the amplitudes 
at the output by means of the matrix M  
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which is obtained by multiplying: the transition 
matrix T  through the interface, and the 
transmission matrix in a dielectric medium dP :
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Here 0( , , , ) /TM zГ T k       stands for the 
so-called wave impedance, ( , , )Г    denotes the 
conductivity of graphene, determined by the Kubo 
formula (1). Note that a wave is considered to be 
polarized parallel to the graphene sheet at the 
interface, since it is for this wave that the hyperbolic 
dependence of its dielectric properties is observed. 

To find the dispersion relation, we consider a 
wave propagating in the direction of the z axis. This 
wave is weakened due to passing through each layer 
of the dielectric, so that in each layer of an infinite 
periodic structure the following conditions hold 
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Solving equations (6) - (7) together with (4), it is 
not difficult to obtain the following homogeneous 
equation in the matrix form 
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whose nonzero solution only exists if the 
determinant of the matrix turns zero 

2
11 22 11 22 12 21( ) 0d dM M e M M e M M      . (9)

Here,   is the Bloch wave number, d
designates the thickness of the dielectric gap. 
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Recalling that the condition 
11 22 12 21 1M M M M   must always be satisfied for a 

periodic structure, expression (9) is simplified to the 
following form: 

11 22Cosh( ) ( ) / 2.d M M    (9)

If   is considered a complex number 
,i     at which 
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, then, two limiting cases arise. Of interest is only 
the first case that corresponds to an undamped wave 
in the periodic structure and strictly determines its 
bandwidth 
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The dispersion relation (10) describes the law of 
propagation of a TM polarized wave in a periodic 
photon structure. It should be noted that in the 
subwave regime, at which 1zk d �  and 1d � , 
expression (10) turns into the dispersion relation 
obtained on the basis of the effective medium 
model: 

2 2 2
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t k k
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where 0( , , , ) /t i Г T d         denotes the 
perpendicular component of the permittivity. 

Figure 3 shows the dependence of ' ''i     
on the transverse component of the wave number 

,k  normalized to 0k . For numerical calculations 
quartz SiO2 with the permittivity of 4.2   and the 
width of 80 nm has been chosen as a dielectric 
medium. It is clearly seen from the figure that for 
the small value of the dimensionless chemical 
potential 0.1  , the dependence ( )k   is purely 
elliptic, see Figure 3a, and the transition point of the 
curve corresponds to the value  . At 0.6   the 
elliptic character of the curve goes over to the 
hyperbolic, see Figure 3b. Note that, in practice, an 
increase in the chemical potential is merely achieved 
by doping of the graphene or by applying an 
external electric field. 

0.1   eV, 300T   K, 0.91  eV, 0.043  eV 
a) Elliptic behavior of the dispersion

b) 

0.6   eV, 300T   K, 0.91  eV, 0.043  eV 
b) Hyperbolic behavior of the dispersion

Figure 3 – Dependence of   on 2 2
x yk k k    at different 

values of the chemical potential 
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Conclusion 

It is inferred from the figures above that when 
an external electric field, applied to graphene, is 
rather small such that the chemical potential   is 
also not large, the dispersion law has purely elliptic 
shape. At the value of 0.6,  a transition of the 
dispersion law is revealed, which manifests itself in 
the appearance of forbidden bands for a plane-
polarized TM wave. In the frequency range, 
corresponding to the forbidden bands, the wave is 
completely reflected from the layered structure, 
whereas the transmitted wave has a minimum 
intensity. Based on the results obtained, it can be 
concluded that the graphene, due to its unique 
optical properties, is a more promising material for 
creating hyperbolic metamaterials than conventional 
metals. This statement is based on the fact that it is 
possible to control the light transmission through a 
layered structure by changing the chemical 
potential  . 
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