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Strong form factor of delta (1232) 

Abstract. Our article is devoted to study of the N  decay. Strong decay N   is one of the 
best modes to search for particles with spin 3/2. Strong decay is dominating channel of decay, i.e.  -
isobar decay consist of 99% - hadronic decay, 1% - electromagnetic decay, therefore the decay is 
important for nuclear research. We calculate relevant form factors in the framework of the covariant 
quark model with infrared confinement in the full kinematical momentum transfer region. The covariant 
quark model has been applied to a large number of elementary particle processes. This model can be 
viewed as an effective quantum field approach to hadronic interactions, which based on an interaction 
Lagrangian of hadrons interacting with their constituent quarks. The coupling strength is determined by 
the compositeness condition 0

H
Z   where ZH is the renormalization constant of the hadron wave 

function. We compare the obtained results with available experimental data and the results from other 
theoretical approaches. 
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Introduction 

In hadron physics the strong interaction 
dominates the decay width of a resonance if 
appropriate hadronic channels are open. For  -
isobar decay  99% - hadronic decay and 1% - 
electromagnetic decay.  

The nucleon and the  -isobar are investigated 
as three-quark systems in the quark-confinement 
model (QCM). This model is based on two 
hypotheses. First, quark confinement is 
accomplished through averaging over some vacuum 
gluon fields which are assumed to provide the 
confinement of any colour states. Second, hadrons 
are treated as collective colourless excitations of 
quark-gluon interactions [1]. 

On the basis of nonlocal three-quark current of 
 -isobar and by using covariant confined quark 
model, we calculate mass operator (self-energy 
diagram), coupling constant and matrix element of 

N  decay. 
The covariant confined quark has been applied 

to a large number of elementary particle processes 
[4, 5]. This model can be viewed as an effective 
quantum field approach to hadronic interactions, 
which based on an interaction Lagrangian of 
hadrons interacting with their constituent quarks. 
The coupling strength is determined by the 
compositeness condition ZH = 0 where ZH is the 
renormalization constant of the hadron wave 

function. The hadron field renormalization constant 
ZH characterizes the overlap between the bare 
hadron field and the bound state formed from the 
constituents. Once this constant is set to zero, the 
dynamics of hadron interactions is fully described 
by constituent quarks in quark loop diagrams with 
local constituent quark propagators. Matrix elements 
are generated by a set of quark loop diagrams 
according to the 1/Nc expansion. The ultraviolet 
divergences of the quark loops are regularized by 
including vertex functions for the hadron-quark 
vertices which, in addition, describe finite size 
effects due to the non-pointlike structure of hadrons. 
Quark confinement was implemented into the model 
[6] by introducing an infrared cutoff on the upper 
limit of the scale integration to avoid the appearance 
of singularities in any matrix element. The infrared 
cutoff parameter λ is taken to have a common value 
for all processes. The covariant confined quark 
model contains only a few model parameters: the 
light and heavy constituent quark masses, the size 
parameters that describe the size of the distribution 
of the constituent quarks inside the hadrons and the 
infrared cutoff parameter λ. They are determined by 
a fit to available experimental data. 

Effective Lagrangian 

The coupling of a  -isobar to its constituent 
quarks ,  and  is described by the Lagrangian
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is a Dirac matrix which projects onto the spin 
quantum number of the isobar field. The function FΔ  
is characterizes the finite size of the isobar. To 
satisfy translational invariance the function FΔ has 

to fulfill the identity FΔ(х + a; x1 + a, x2 + a, x3 +a) 
= FΔ(х; x1, x2, x3) for any four-vector a. In the 
following we use a specific form for the scalar 
vertex function 

 

 
23

; , , ,1 2 3 1
F x x x x x x x xi i i ji i j

 
                      

                                   (3) 

 
where � is the correlation function of the 
constituent quarks with masses ���, ���, ��� and 
the mass ratios �� � ���/���� � ��� � ����. 

We choose a simple Gaussian form of the vertex 
function Ф�∆�����. The minus sign in the argument 
of this function is chosen to emphasize that we are 
working in the Minkowski space. One has 

 
Ф������� � ������/���              (4) 

 
where the parameter � characterizes the size of the 
meson. Since �� turns into ���� in the Euclidean 
space, the form (4) has the appropriate fall-off 
behavior in the Euclidean region. We emphasize 

that any choice for � is appropriate as long as it 
falls off sufficiently fast in the ultraviolet region of 
the Euclidean space to render the corresponding 
Feynman diagrams ultraviolet finite. We choose a 
Gaussian form for � for calculation convenience. 

 
Strong form factors of Δ(1232) in the 

covariant quark model 
 
We will study strong decay of Δ++

 to proton and 
positive pion to investigate the strong form factors 
of Δ(1232). 

The matrix element corresponding to that 
Feynman diagram represented as 
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The Feynman diagram which describes this 

process is given in Figure 1. 
Three-quarks current of proton and pion given in 

similar way with Δ-isobar,  
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Figure 1 – Decay of Δ++→pπ 
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The matrix 0 2C    is the usual charge 
conjugation matrix and the ai (i = 1, 2, 3) are color 
indices. There are two possible kinds of 
nonderivative three-quark currents: ΓA ⊗ ΓA = 

γα⊗γα (vector current) and ΓA⊗ΓA = 1/2 σαβ⊗σαβ 
(tensor current) with σαβ = i/2 (γαγβ − γβγα).  

Let us write the T-production for the matrix 
element in eq.(5) 
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Then we rewrite the M-martix as 
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After integrating by space coordinates we get a 
set of δ-functions, which help us to vanish some 
momentum integrations. As a result we have 
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We use the next definitions 
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After loop integration we get 4-integral, which 
are numerically calculated. It is convenient to 
approximate the result of numerical calculations by 
dipole function 

 2
22 2

1

1 / D

G Q
Q


   

where, parameter 0.96D   GeV. Function 
behavior in the region 2 20 2.5Q q     GeV2 

represented at Figure 2. 
For comparison we use graphics from others 

theoretical approaches such as [1]-[3] and results of 
lattice QCD calculations [4]. For graphic 3 we use 
parameterization given in work [2] 
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0q q Q 
 . 

Figure 2 – Strong form factor of Δ-isobar 

Also we represent Table 1 with numerical values 
of strong coupling constants pG  .

Table 1 – Strong constant of decay 

Exp Our work [1] [2] [3] [5] [6] [7] [8]
1[ ]pG GeV


  15.4±2.9 15.2 17.0 11.14 14.98 14.85 17.76 15.2 13.4±5.4 

Conclusion 

We calculate coupling constant of delta-isobar. 
The calculated value of coupling constant is in good 
agreement with the experimental data.  

We built the graphic of G(Q2) in Euclidian 
region of squared momentum transfer Q2=-q2. We 
compare our results with [1]-[3], [5]-[8] works. Our 
results are close to work [2]. 
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