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Abstract. In the classical finite element literature beams and plates are not considered as isoparametric 
elements since infinitesimal rotations are used as nodal coordinates. As a consequence, exact modeling of 
an arbitrary rigid body displacement cannot be obtained, and rigid body motion does not lead to zero 
strain. In order to circumvent this problem in flexible multibody simulations, an intermediate element 
coordinate system, which has an origin rigidly attached to the origin of the deformable body coordinate 
system and has axes which are parallel to the axes of the element coordinate system in the undeformed 
configuration was introduced. The correct equations of motion, however, can be obtained if the 
coordinates are defined in terms of global slopes. Using this new definition of the element coordinates, an 
absolute nodal coordinate formulation that leads to a constant mass matrix for the element can be 
developed. Using this formulation, in which no infinitesimal or finite rotations are used as nodal 
coordinates, beam and plate elements can be treated as isoparametric elements. 
Key words: rigid body, inertia, finite, element method, multibody systems, dynamics. 

 
 
Introduction 
 
With regard to the dynamics of constrained 

deformable bodies that undergo large rigid body 
rotations, there are three well known solution 
procedures which are briefly summarized below: 

(1) Floating Frame of Reference. In this 
approach, a coordinate system is assigned to each 
deformable body in the multibody system. The 
configuration of the deformable body is identified 
using two sets of coordinates that define the location 
and orientation of the deformable body coordinate 
system, as well as the deformation of the body with 
respect to its coordinate system. Cartesian 
Coordinate formulations as well as recursive 
methods are often used with the floating frame of 
reference approach. 

(2) Incremental Finite Element Approach. In this 
approach, the nodal coordinates of the finite 
elements are used to describe incrementaly the large 
rigid body rotations of the elements. The equations 
of motion are formulated in terms of the nodal 
coordinates only and a convected element 
coordinate system is used to define the current 
element configuration. 

(3) Large Rotation Vector. This approach was 
introduced recently in order to avoid the 
linearization that results from the use of the 
incremental finite element approach. In this 

approach, the element rotations are described using 
a finite rotation vector defined at the element nodal. 

In the large deformation analysis, rate 
constitutive equations must correctly represent the 
relationship between the stress rate and the arbitrary 
rigid body translation and rotation. The 
displacement increment over the step was defined 
and the gradient of this displacement was used to 
define the strain and rotation tensors, which are, in 
turn, used to define the algorithm for integrating the 
constitutive equations. Flanagan and Taylor 
presented a numerical algorithm for the integration 
of constitutive equations under both large 
deformations and/or large rotations. The examples 
showed the relative efficiency of the unrotated 
configuration, and the computational efficiency and 
accuracy of the numerical algorithms in dealing with 
large rotation problems and its insensitivity to 
orientation. 

Several numerical integration algorithms were 
proposed in order to improve the computational 
efficiency and accuracy of the solution for dynamic 
structural systems. In some of these numerical 
algorithms, criteria were introduced in order to 
preserve some basic rigid body quantities such as 
the linear and angular moment and the kinetic 
energy. These criteria ensure that these basic 
quantities are not compromised during the process 
of the numerical integration provided that the exact 
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rigid body equations of motion including the exact 
mass moments and products of inertia are used. 
Using this hypothesis, it is assumed that the error in 
the solution is mainly the result of the numerical 
integration. As demonstrated in this paper and in 
previous publications, some of the commonly used 
shape functions and the associated nodal coordinates 
can not be used to define the exact rigid body 
equations of motion, and therefore, it becomes 
necessary to quantify the errors in the basic dynamic 
equations prior to investigating the accuracy of the 
numerical integration methods. 

In this formulation, no infinitesimal or finite 
rotations are used as nodal coordinates, instead, 
absolute displacements and slopes are used to define 
the element configuration in the global coordinate 
system. The absolute slopes can be determined in 
the undeformed reference configuration using 
spatial rigid body kinematic equations. 

 
Finite Element and Rigid Body Inertia 
 
In the classical finite element literature, beams 

and plates are not considered as isoparametric 
elements. The use of the infinitesimal rotations as 
nodal coordinates leads to linearized kinematic 
equations which do not describe exact rigid body 
motion. In order to utilize existing finite element 
methodologies and computer programs, the concept 
of the intermediate element coordinate system was 
introduced in order to obtain an exact modeling of 
the rigid body inertia using the conventional finite 
element shape functions. 

Since the conventional element shape functions 
contain rigid body modes that describe arbitrary 
translations, the exact location of an arbitrary point 
on the beam, in an intermediate coordinate system 
which differs from the element coordinate system 

by a translation in the undeformed configuration, 
can be defined using this element shape function. As 
a consequence, the exact rigid body mass moments 
and products of inertia as well as the moments of 
mass can be evaluated using the element shape 
function and the vector of element nodal 
coordinates. 

Rigid Body Inertia. In the three dimensional 
analysis, the inertia forces of the rigid body are 
defined in terms of the inertia tensor and the 
moments of mass. The rigid body inertia tensor for a 
spatial system is defined as 

 

 
T

V
I u udV


                          (1) 

where the superscript T indicates a transpose of a 
vector or a matrix, is the inertia tensor defined in the 
body coordinate system, ρ is the mass density, V is 
the volume and u~  is the skew symmetric matrix 
associated with the vector u  that defines the local 
position of an arbitrary point on the body. The skew 
symmetric matrix u~ can be written as 
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where 1u , 2u  and 3u are the components of the 
vector u , that is 
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The inertia tensor for the rigid body can be 

written more explicitly  as 
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In the case of a slender beam element, the vector 

u can be written as 
[ 0 0]Tu x  

where x is the position of the arbitrary point from 
the endpoint which defines the origin of the beam 
coordinate system .  
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Using the vector u  the inertia tensor of the 
slender beam element can be obtained  

 

as 2

2

0 0 0

0 0
3

0 0
3

mlI

ml



 
 
 
 
 
 
 
  


 

 
 
where m is the mass of the beam element and l is its 
length.  
 

 
 

Figure – Three dimensional beam element 
 
 
The moment of mass of the beam is defined as 
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Using the vector u of the slender beam, one can 

show that the moment of mass is defined as 
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Shape Function. If the shape function can be 

used to describe an arbitrary rigid body translation, 
the element nodal coordinates and the shape 
function can be used to define the location of an 
arbitrary point on the element with respect to the 
element coordinate system. In this case, the vector 
u  can be written as 

 

Seu      
 

where S  is the shape function matrix of the element 
and e is the vector of the element nodal coordinates. 
If the effect of rotary inertia is neglected, the shape 
function S can be defined in the case of three 
dimensional beam element as  
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where ξ = x/l, and l is the length of the beam 
element. If the beam element is considered as a rigid 
body, then the vector of nodal coordinates defined 
in the element coordinate system is given by 

 
 Tle 00000000000  

 
In this case one has  
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and as a consequence, the mass moments of inertia 
of the rigid beam are defined in terms of the element 
shape function as 
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and the products of inertia are 
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where 

dVSSS k
V

T
jjk       

 
and Sk is the kth row in the element shape function. 
Further-more, the moment of mass is defined as  
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In the case of the beam element shape function, 
the matrix S is given by 
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It is clear from the analysis presented in this 
section that all the rigid body inertia quantities can 
be evaluated using the element shape integrals S , 
and Sjk. 

 
Intermediate Element Coordinate System 
 
The intermediate element coordinate system 

shown in Fig. 1 is introduced in flexible multibody 
simulation in order to obtain exact modeling of the 
rigid body inertia when the structures undergo 
arbitrary large rotations. In the initial undeformed 
configuration, this intermediate coordinate system 
differs from the element coordinate system by a 
rigid body translation. The results of the parallel 
axis theorem, often used in rigid body dynamics, 
can be obtained, using the element shape function 
and the intermediate element coordinate system, by 
utilizing the fact that the position coordinates of an 
arbitrary point on the finite element can be defined 
in the intermediate coordinate system using the 
element nodal coordinates. Before we demonstrate 
this fact in the general case of three dimensional 
displacement, we consider the case in which the. 
origin of the intermediate element coordinate system 
is located at the center of mass С of the element. In 
this case, the vector of coordinates defined in the 
intermediate element coordinate system is 
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Using this vector of nodal coordinates, the mass 
moments of inertia can be calculated as 
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and the products of inertia are 
 

kjkjeSei jk
T
Cjk  3,2,1,0                          

 
where the matrices Sjk are defined in the previous 
section. The use of equations shows that the 
moment of mass about the center of mass is 

 
0 CC eSM  

 
where the matrix S in the case of the three 
dimensional beam element is defined. 
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General Translations. If the element 
coordinate system differs from the intermediate 
element coordinate system by a general three 
dimensional displacement defined by the vector 

 
 Tzyx dddD                  (8) 

 
the vector of nodal coordinates defined in the 
intermediate element coordinate system is given by  
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In this case, the mass moments and products of 
inertia can be evaluated using the element shape 
function S and the vector of nodal coordinates as 
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which are the exact expressions for the mass 
moments and products of inertia that can be 

obtained using the parallel axis theorem used in 
rigid body dynamics. 

The moment of mass is defined in the 
intermediate element coordinate system as 
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The analysis presented in this section 

demonstrates that exact modeling of the basic inertia 
quantities can be obtained by using the intermediate 
element coordinate system, and as a consequence, 
the use of this coordinate system in the nonlinear 
flexible multibody formulation does lead to the 
exact equations of motion of the spatial rigid body. 

 
Examples 
 
In this section, we present three different forms 

of the equations of motion of the beam obtained 
using the three different approaches discussed in the 
preceding sections. The first form represents the 
exact equations of motion of the beam, the second 
form is obtained using the convected system 
approach, while the third form is obtained using the 
early linearization scheme. In the three cases, for 
simplicity, we consider a beam which has an 
arbitrary rigid body translation, and it is allowed to 
rotate about its Z axis. 

Exact Equations. The exact equations of 
motion of the system are 
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where Rx, Ry, Rz, are the translational coordinates 
of the reference point of the beam, в is the angle 
that defines the beam orientation, Qex, Qey, Qez, 
and Qeθ are the components of the vector of 

generalized external forces and Qvx, Qvy, Qvz and 
Qvθ are the components of the vector of 
centrifugal forces. The components of the vector 
of centrifugal forces are  
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Convective System. For the beam model used 
in this section, we define the system generalized 
coordinate vector as 
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In terms of the components of this vector, the 

vector of nodal coordinates, in the case of the 
convective system, can be written as 
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The kinetic energy of the beam is 
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Using Lagrange's equation, the equations of 
motion of the beam are 
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and in the case of connected coordinates, the vector 
of centrifugal forces is written as 
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The errors in these equations are readily seen by 

comparing with the exact equations previously 
presented in this section. 

 
 

Early Linearization. In the case of a simple 
rotation в about the Z axis, the global position 
vector of an arbitrary point on the beam element can 
be written as 
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The slope in this case is defined as 
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Using this as definition of the slope in the vector 
of nodal coordinates, one has 
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It can be demonstrated that the use of this vector 
and the element shape function leads to the exact 
rigid body inertia quantities and the exact equations 
of motion presented previously in this section. If the 
vector e, on the other hand, is linearized, one has 
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In order to see the error that might result in the 
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The kinetic energy of the beam is 
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where M is the mass matrix of the rigid beam 
defined as 
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and Mff is as defined in equation. The use of 
Lagrange’s Equation leads to the following matrix 
equation of motion in the case of early linearization. 
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




(23) 

 
where the vector Qv is defined as 
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






































0
0
0
0

v

vz

vy

vx

v

Q
Q
Q
Q

Q                      (24) 
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Note that in the case of early linearization, the 
vector Q of centrifugal forces is identically equal to 
zero. Observe also the error in the definition of the 
moments of mass in the mass matrix.  

 
Conclusion 
 
In this paper, two conceptually different finite 

element methods that lead to exact modeling of the 
spatial rigid body inertia of beams are discussed. 
The first method is used when infinitesimal 
rotations are used as nodal coordinates for the finite 
element. This method allows the use of the classical 
finite element formulations in the flexible multibody 
simulations. In the second method, absolute 
displacements and slopes are used as nodal 
coordinates, instead of using infinitesimal rotations. 
This method has a potential in solving large 
deformation problems in varieties of flexible 
multibody applications. 

In the flexible multibody formulations of 
elements that have infinitesimal rotations as 
coordinates, an intermediate element coordinate 
system is introduced. This coordinate system does 
not follow the element deformation, and is used 
only to define the locations of the nodes in the 
undeformed state, thus preserving the exactness of 
the rigid body inertia. This coordinate system is 
rigidly attached to the structure (not the element) 
coordinate system. The position of an arbitrary point 
on the element can be defined in the element 
coordinate system as u = S(e0 + ef), where S is the 
element shape function, e0 is the vector of nodal 
locations in the undeformed state (This is not the 
vector of rigid body displacements), and ef the 
vector of nodal displacements defined in the 
intermediate element coordinate system. The 
preceding equation can be used to develop a 
nonlinear formulation that leads to an exact model 
for the spatial rigid body inertia. 

The concept of the intermediate element 
coordinate system has been successfully used in the 
analysis of small deformations in many flexible 
multibody applications. The limitations of this 
approach in the analysis of large deformations stem 
from the fact that infinitesimal rotations are used as 

nodal coordinates. In this case beam elements are 
not considered as isoparametric elements. It is 
demonstrated in this paper that beam elements can 
be considered as isoparametric elements if absolute 
slopes instead of infinitesimal rotations, are used as 
nodal coordinates. 
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