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Numerical modeling of elliptic equations on unstructured and hybrid grids 

Abstract. In reality, most of the physical processes are described by partial differential equations. At the 
same time, many application problems require numerical simulations in areas with complex geometry. 
Description of computational areas with complex geometric shape is best performed on unstructured and 
hybrid grids. An important advantage of unstructured or hybrid grid is simplicity of generation. For this 
purpose a large preference was given for methods that can be applied on unstructured and hybrid grids. 
This method is a finite volume method. One of the advantages of this discretization method is performing 
of local and global conservation laws, and this is very important in solving many applied problems. In the 
present work the variety of grids with their advantages and disadvantages are described, also the final 
volume method and choice of the shape of final volume are considered, discretization of the two and three 
dimensional Poisson equation by finite volume method is made on the unstructured and hybrid grid, 
formulas of finding areas, volumes and normal are described and displayed. The aim of this work is the 
further application of the finite volume method, and obtaining approximation of the Poisson equation in 
two-dimensional and three-dimensional cases on unstructured and hybrid grid. Finally, numerical results 
for unstructured and hybrid grids, as well as the data that obtained are compared with the analytical 
results, which shows good agreement. The numerical values are illustrated in the work in the form of 
plots. 
Key words: two and three dimensional Poisson equation, unstructured mesh, hybrid mesh, finite volume 
method, Jacobi method. 

Introduction 

When we solve the fluid dynamics applications 
tasks one of the main problems is the computational 
domain. Various types of computational grids are 
used to describe the computational domain. Two 
main classes can be identified among the types of 
computational grids: 

1. Structured mesh (regular grid).
2. Unstructured mesh (irregular grid).
Structured mesh, that shown in the Figure 1, are 

widely used in the field of computational fluid 
dynamics. When you create a regular grid, the grid 
nodes are an ordered structure, that have clearly 
defined grid direction. The main advantage of using 
a structured mesh is to maintain the canonical 
structure of the neighbors to mesh nodes. In the case 
of two-dimensional computational grid, cells are 
rectangles, and in three-dimensional case – 
hexagons. This type of mesh has two forms: grids 
with fixed (constant) step and meshes with a 
variable step, and the step may be constant for one 

of the axes and variable on other. Regular mesh 
allows you to use different discretization methods, 
in particular the finite difference method and finite 
volume method.Usually when you create regular 
grids in complex geometric areas, you need to use 
the coordinate transformation to build a uniform 
computational grid, as well as you have to write its 
mathematical model in curvilinear coordinates. 

The main feature of unstructured grids, that 
shown in Figure 2, is a chaotic arrangement of mesh 
points in the computational domain, and as a 
consequence there are no areas of the grids’ 
directions and it is impossible to arrange mesh 
nodes. In the three dimensional case the grid cells 
are used by polyhedrons and in the two dimensional 
case polygons with any shape. Generally, in the two 
dimensional case we use triangles, in the three 
dimensional case - tetrahedrons. The use of more 
complex geometric shapes is irrational in the 
process of meshing. Irregular mesh allows you to 
use different discretization methods, such as finite 
volume method and finite element method.
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                            Figure 1 – Structured mesh                                                 Figure 2 – Unstructured mesh 

 
 

 
Figure 3 – Hybrid mesh 

 
 
There are many ways of triangulation of 

calculation domain through the given points, but 
with any methods of triangulation we get the same 
number of triangles. Triangulation of the 
computational domain is produced according to 
certain criteria. One of the criterions of triangulation 
sounds like that – triangles, which are obtained, 
should be more like equilateral triangles, in other 
word the angles must not be too sharp. Another 
criterion of triangulation is triangles, that we 
created, shouldn’t be much different in size from the 
neighboring triangles (mesh uniformity criterion). 

The main disadvantage is the lack of data about 
irregular mesh structure, which leads to high costs 
of computing resources (computational memory). 
The positive features of unstructured grids are: 

а) the application of this computational grids to a 
large number of applicable tasks; 

b) minimum time in the construction of 
unstructured mesh as opposed to regular grids for 
complex geometries; 

c) implementation of thickening mesh in certain 
areas of computational mesh by natural way. 

The combination of structured and unstructured 
grids forms a so-called hybrid mesh (Figure 3), 
which allows you to take advantage from certain 
nets and reduce the disadvantages of a particular 
type of nets. Hybrid mesh often used for solving 
applied problems of fluid mechanics and gas 
mechanics. 

 
Mathematical model 
 
For the two variants of problems numerical 

solutions are compared with analytical solutions. To 
verify the numerical algorithm on unstructured and 
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hybrid meshes we used Poisson equation, which has 
an analytical solution. In this paper we consider two 
problems. In the first problem we considered a two-
dimensional Poisson equation, which was solved on 
unstructured grids. In the second problem we 
considered a three-dimensional Poisson equation, 
which was solved on unstructured and hybrid 
computing meshes. 

The first problem (two-dimensional equation): 
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This equation has an analytic solution of this 

type:  
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The second problem (three-dimensional 

equation): 
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This equation has an analytic solution of this 
type:  
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Approximation of the equations 
 
Poisson's equation was approximated by using 

the control volume method and it was solved 
numerically by Jacobi method. For the application 
of the approximation by method of control volume 
we used Gauss's theorem with further replacement 
of the surface integral to a finite sum, that has the 
form: 
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Since the number of faces is limited, we can 

replace the surface integral sum with: 
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The next task is to express   ff n through 
the values of the center of the cell. For this we 
consider the operator Nabla. 
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The above Nabla operator can be written by 

another basis vectors. That is for the unit normal 
vector, two unit tangent and to the normal vector 
that perpendicular to the plane. 
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Similarly, for the new base: 
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The two-dimensional case on the unstructured 

grid (Figure 4). 
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Lets consider the vector l , that connects the two 
centers of the neighboring cells. Then lets perform 
scalar multiplication of vector l with Nabla 
operator. 

 
        lttnl fffffff    
 

For approximation of   lf   to the cell 
centers, lets expand it in a Taylor series,and with the 
non-trivial action we get: 

 

 
 

 

1 0 f f f
f f

f f

f f f

t t l
n

J t t l

 
 



        

     

 

 
Letsconsiderseparately Jf. 
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Figure 4 – Two adjacent cells of unstructured mesh 
 
 
Eventually the approximation of the two-

dimensional case can be written like following 
formula: 

 

   
























 





f
f

f
ff

ff

ba

f
fffff VSAlt

t
kAnk 00,

01








 
 

 
And for the three-dimensional case lets go back 

to the main final volume equation. 
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We take Nabla operator for normal and for his 

two orthogonal tangent vectors. 
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Consider a gradient, that is shown below. 
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As well as the two-dimensional case 
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where JT – tangential flow. Let us consider now a 
triangular face (Figure 6), in which we try to extract 
JT. 

 

 
Figure 5 – Two neighboring tetrahedron 
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Figure 6 - The face of a tetrahedron 
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Substitute it in tangential flow equation: 
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Let us use the properties of the mixed 

multiplication of vectors: 
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One of the problems when we calculate JT  is the 
normal  ne  to the side of faces of the finite 
volume element. 
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Substitute ne in JT, weget: 
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When we multiply the length of the side Le to the 

unit vector et  that will become equal to the vector 

eT , which describes the whole side faces. 
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Then we use properties of the mixed 

multiplication of vectors and apply it for the above 
mentioned equation. 
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Returning to the expression   ff

n 
 lets 

substitute, that we found in JT: 
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During non-trivial transformations we obtain our 

final approximation of the Helmholtz equation for 
two-dimensional and three-dimensional case. The 
problem is solved iteratively by using the Jacobi 
method. 

Final form of discrete Jacobi method by using 
unstructured mesh for two-dimensional Poisson 
equation will look like this equation:  
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accuracy of the solution, but by adapting 
unstructured computational mesh to complex 
geometry wa can create hybrid mesh, which will 
compensate the pros and cons of structured and 
unstructured grids.. 

In the paper it is shown that by using 
unstructured mesh numerical error equal 0.9%, and 
using a hybrid grid numerical error does not exceed 
0.4%. From this we can conclude that it is necessary 
to use a structured grid in the area where it is 
possible and necessary to use unstructured grid 
where we can not use a structured grid.  
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