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Numerical modeling of elliptic equations on unstructured and hybrid grids

Abstract. In reality, most of the physical processes are described by partial differential equations. At the
same time, many application problems require numerical simulations in areas with complex geometry.
Description of computational areas with complex geometric shape is best performed on unstructured and
hybrid grids. An important advantage of unstructured or hybrid grid is simplicity of generation. For this
purpose a large preference was given for methods that can be applied on unstructured and hybrid grids.
This method is a finite volume method. One of the advantages of this discretization method is performing
of local and global conservation laws, and this is very important in solving many applied problems. In the
present work the variety of grids with their advantages and disadvantages are described, also the final
volume method and choice of the shape of final volume are considered, discretization of the two and three
dimensional Poisson equation by finite volume method is made on the unstructured and hybrid grid,
formulas of finding areas, volumes and normal are described and displayed. The aim of this work is the
further application of the finite volume method, and obtaining approximation of the Poisson equation in
two-dimensional and three-dimensional cases on unstructured and hybrid grid. Finally, numerical results
for unstructured and hybrid grids, as well as the data that obtained are compared with the analytical
results, which shows good agreement. The numerical values are illustrated in the work in the form of
plots.
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Introduction

When we solve the fluid dynamics applications
tasks one of the main problems is the computational
domain. Various types of computational grids are
used to describe the computational domain. Two
main classes can be identified among the types of
computational grids:

1. Structured mesh (regular grid).

2. Unstructured mesh (irregular grid).

Structured mesh, that shown in the Figure 1, are
widely used in the field of computational fluid
dynamics. When you create a regular grid, the grid
nodes are an ordered structure, that have clearly
defined grid direction. The main advantage of using
a structured mesh is to maintain the canonical
structure of the neighbors to mesh nodes. In the case
of two-dimensional computational grid, cells are
rectangles, and in three-dimensional case -—
hexagons. This type of mesh has two forms: grids
with fixed (constant) step and meshes with a
variable step, and the step may be constant for one
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of the axes and variable on other. Regular mesh
allows you to use different discretization methods,
in particular the finite difference method and finite
volume method.Usually when you create regular
grids in complex geometric areas, you need to use
the coordinate transformation to build a uniform
computational grid, as well as you have to write its
mathematical model in curvilinear coordinates.

The main feature of unstructured grids, that
shown in Figure 2, is a chaotic arrangement of mesh
points in the computational domain, and as a
consequence there are no areas of the grids’
directions and it is impossible to arrange mesh
nodes. In the three dimensional case the grid cells
are used by polyhedrons and in the two dimensional
case polygons with any shape. Generally, in the two
dimensional case we use triangles, in the three
dimensional case - tetrahedrons. The use of more
complex geometric shapes is irrational in the
process of meshing. Irregular mesh allows you to
use different discretization methods, such as finite
volume method and finite element method.
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Figure 1 — Structured mesh
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Figure3-H

There are many ways of triangulation of
calculation domain through the given points, but
with any methods of triangulation we get the same
number of triangles. Triangulation of the
computational domain is produced according to
certain criteria. One of the criterions of triangulation
sounds like that — triangles, which are obtained,
should be more like equilateral triangles, in other
word the angles must not be too sharp. Another
criterion of triangulation is triangles, that we
created, shouldn’t be much different in size from the
neighboring triangles (mesh uniformity criterion).

The main disadvantage is the lack of data about
irregular mesh structure, which leads to high costs
of computing resources (computational memory).
The positive features of unstructured grids are:

a) the application of this computational grids to a
large number of applicable tasks;

Figure 2 — Unstructured mesh
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ybrid mesh

b) minimum time in the construction of
unstructured mesh as opposed to regular grids for
complex geometries;

c) implementation of thickening mesh in certain
areas of computational mesh by natural way.

The combination of structured and unstructured
grids forms a so-called hybrid mesh (Figure 3),
which allows you to take advantage from certain
nets and reduce the disadvantages of a particular
type of nets. Hybrid mesh often used for solving
applied problems of fluid mechanics and gas
mechanics.

Mathematical model
For the two variants of problems numerical

solutions are compared with analytical solutions. To
verify the numerical algorithm on unstructured and
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hybrid meshes we used Poisson equation, which has
an analytical solution. In this paper we consider two
problems. In the first problem we considered a two-
dimensional Poisson equation, which was solved on
unstructured grids. In the second problem we
considered a three-dimensional Poisson equation,
which was solved on unstructured and hybrid
computing meshes.
The first problem (two-dimensional equation):
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This equation has an analytic solution of this
type:

u=sin(x+2y)+e>**

The second problem  (three-dimensional
equation):
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This equation has an analytic solution of this
type:

u=cos(3x+y—2z)+e"? +1
Approximation of the equations

Poisson's equation was approximated by using
the control volume method and it was solved
numerically by Jacobi method. For the application
of the approximation by method of control volume
we used Gauss's theorem with further replacement
of the surface integral to a finite sum, that has the
form:

[V-(kVg)av = j kV ¢-ndA

"

Since the number of faces is limited, we can
replace the surface integral sum with:

ingzﬁ MdA = ;kf (Vo) 7,4, =5,V

The next task is to express (V¢) e 7_1 7 through

the values of the center of the cell. For this we
consider the operator Nabla.

cor[247,887. 241

The above Nabla operator can be written by
another basis vectors. That is for the unit normal
vector, two unit tangent and to the normal vector
that perpendicular to the plane.

Vo= %5 +%tl +%t2
on o ot,

Similarly, for the new base:

Vo=[(ve)nli+[(vVe)-i ] +[(ve) o]

The two-dimensional case on the unstructured
grid (Figure 4).

Vo=|ve)-n, i, +|(Ve)-i
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Lets consider the vector / , that connects the two
centers of the neighboring cells. Then lets perform

scalar multiplication of vector I with Nabla

operator.

(Vo)1 =|(ve), -7, k5, +|(vo), -7, F, 1

For approximation of (V¢)f ‘1l to the cell

centers, lets expand it in a Taylor series,and with the
non-trivial action we get:
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Figure 4 — Two adjacent cells of unstructured mesh

Eventually the approximation of the two-
dimensional case can be written like following
formula:

zkf (V¢)f npd, = ;k.f

And for the three-dimensional case lets go back
to the main final volume equation.

gkf(wﬁ)f A, =84V,

We take Nabla operator for normal and for his
two orthogonal tangent vectors.

Ve=[(Ve)nli+[(Ve) 1t | +[(V4)-i. [
Consider a gradient, that is shown below.
(Vo), T=|(Ve), 7, |, T+
+{[7x(vo), e | 7

As well as the two-dimensional

(V¢)f l_z¢l —@yand S =71
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where Jr — tangential flow. Let us consider now a
triangular face (Figure 6), in which we try to extract
Jr.

Figure 5 — Two neighboring tetrahedron
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One of the problems when we calculate Jr is the
normal (%) to the side of faces of the finite
volume element.

n, = texnf

Substitute He in Jr, weget:

3
Figure 6 - The face of a tetrahedron _ 1 o= |7
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During non-trivial transformations we obtain our v I
final approximation of the Helmholtz equation for [Z( L) { e ””}Z/ -Z,JAM]
two-dimensional and three-dimensional case. The RN S, 5,7
problem is solved iteratively by using the Jacobi ’ 4,
method. [Z/: ; - 3V,j

Final form of discrete Jacobi method by using
unstructured mesh for two-dimensional Poisson
equation will look like this equation: (~2sin(x +2y) +16¢™ ),

) 4,
3y
(sheew]
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Final discrete form of Jacobi method by using
unstructured mesh for two-dimensional Poisson
equation will look like this:

u;, 1 S - 7
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Results of numerical calculations

In the first problem for the two-dimensional
Poisson equation physical area is used with the sizes
Lx = 0.25 and Ly = 0.5, which is approximated by
using triangles. The number of physical computing
points 1471, number of cells 2764. As shown in
Figure 7, computational grid is stressed at the point
(0.25, 0.5), because in this area the Neumann
boundary condition is used and to minimize the
numerical errors we had to stress the computational
grid at the given point. For the second problem for
the three-dimensional Poisson equation physical
area is used with the sizes Lx = 0.25, Ly = 0.5, Lz =
0.5, which is approximated by using tetrahedrons
for the unstructured mesh. Number of nodes 4687,
number of cells 23084. (Figure 8).

nA na

Figure 7 — A two-dimensional grid with numerical solution.
The maximum error is equal to 0.0654(0.7%).

Figure 8 — Three-dimensional mesh with the numerical solution.
The maximum error is equal to 0.026(0.9%).
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To reduce the numerical errors for unstructured
meshes the hybrid mesh was used. For a hybrid
three-dimensional problem the conditions of the
second problem are wused (three-dimensional

Puassson equation). For this purpose computing
region is divided into two blocks: unstructured and
which  will

structured meshes, consist of

n'ﬁ
i

7]

WA

Xk
il
VAL

=

,_%':"
:
i

%
i
i

4
l’?

[

L

2
-

S

&<y

tetrahedrons, hexagons and pyramids. Number of
points 1812, number of cells 4380. Grid stressed
along Z axis to the face, where the Neumann
boundary condition is defined (fig.9). The following
figures show benefits of unstructured and hybrid
meshes on objects with various shapes.
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Figure 9 - The hybrid mesh with the numerical solution.
The maximum error is equal to 0.0114(0.4%).

Conclusion

During implementation of this work on the basis
of numerical solution of two-dimensional and three-
dimensional Poisson equations, test computations of
finite volume method on unstructured grids were
made. And also an analysis of solutions was
performed for the three-dimensional Poisson
equation using a hybrid mesh.

When we compared the results of numerical
results of three-dimensional Poisson equation for
unstructured and hybrid meshes, it may be noted
that the numerical error is reduced when we use the
hybrid mesh, and also computing resources used
much less.

As aresult of our investigation, according to the
data that obtained, it can be said that the regular
computational grid has the advantage in the
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accuracy of the solution, but by adapting
unstructured computational mesh to complex
geometry wa can create hybrid mesh, which will
compensate the pros and cons of structured and
unstructured grids..

In the paper it is shown that by using
unstructured mesh numerical error equal 0.9%, and
using a hybrid grid numerical error does not exceed
0.4%. From this we can conclude that it is necessary
to use a structured grid in the area where it is
possible and necessary to use unstructured grid
where we can not use a structured grid.

References

1. Mazumder S. -Numerical methods for partial
differential equation: Finite Difference and Finite
Volume Methods. — Academic Press, 2015.
—484 p.

2. Versteeg H.K. Malalasek Introduction to
computational fluid dynamics The finite volume
method. — Pearson, 2007. — 520p.

3. F.Moukalled L.Mangani M.Darwish - The
finite volume method in computational fluid
dynamics. — Springer, 2015. =791p.

4. Fletcher K. VychisliteI'nye metody v dinamike
zhidkostej. — Moscow: Mir, 1991. —-Vol.2. — 552 p.

5. Chung T.J. Computational fluid dynamics. —
Cambridge University Press, 2002. 1012 p.

6. Anderson D., Tannehil Dzh., Fletcher R. -
Vychislitel'naja gidromehanika i teploobmen.
Moskva, Mir, 1990. —Vol. 2. — 392 p.

7. Issakhov A., Mathematical modeling of the
discharged heat water effect on the aquatic
environment from thermal power plant //
International Journal of Nonlinear Science and
Numerical Simulation, — 2015. — Vol.16, No 5. —
P. 229-238, doi:10.1515/ijnsns-2015-0047.

8. Issakhov A., Mathematical modeling of the
discharged heat water effect on the aquatic
environment from thermal power plant under
various  operational  capacities //  Applied
Mathematical Modelling. — 2016. — Vol. 40, No 2.
—P. 1082-1096

9. Issakhov A. Large eddy simulation of
turbulent mixing by using 3D decomposition
method // J. Phys.: Conf. Ser. — 2011. -Vol.318, No
4.—P. 1282-1288.

10. Ferziger J.H., M. Peric - Computational
Methods for Fluid Dynamics. — Springer, 2013. —

440 p.
11. Firsov D.K. Metod kontrol'nogo ob'ema na
nestrukturirovannoj  setke =~ v vychislitel'noj

matematike. — Tomsk, 2007. — 72 p.

International Journal of Mathematics and Physics 7, Ne2, 11 (2016)



