
© 2016 al-Farabi Kazakh National University                                    Printed in Kazakhstan

International Journal of Mathematics and Physics 7, №1, 117 (2016)
 

UDC 539.19 
 

1*Seshavatharam U.V.S., 2Lakshminarayana S. 
 

1Honorary Faculty, I-SERVE, Alakapuri, Hyderabad-35, Telangana, India 
2Departament of Nuclear Physics , Andhra University, Visakhapatnam-03, AP, India 

*e-mail: seshavatharam.uvs@gmail.com 
 

Towards a workable model of final unification 
 
 

Abstract: Even though ‘String theory’ models and “quantum gravity’ models are having a strong 
mathematical back ground and sound physical basis, they are failing in implementing the Newtonian 
gravitational constant in atomic and nuclear physics and thus seem to fail in developing a ‘workable’ 
model of final unification. In this context, extending Abdus Salam’s  old concept of ‘nuclear strong 
gravitational coupling’ we consider  two very large pseudo gravitational constants assumed to be 
associated with electromagnetic and strong interactions. By combining the two microscopic pseudo 
gravitational constants with the Newtonian gravitational constant, we make an attempt to combine the old 
‘strong gravity’ concept with ‘Newtonian gravity’ and try to understand and re-interpret the 
constructional features of nuclei, atoms and neutron stars in a unified approach. Finally we make a 
heuristic attempt to estimate the Newtonian gravitational constant from the known elementary atomic and 
nuclear physical constants. By exploring the possibility of incorporating the proposed two pseudo 
microscopic gravitational constants in current unified models, in near future, complete back ground 
physics can be understood and observable low energy predictions can be made.  
Key words: Final unification, Schwarzschild interaction, Newtonian gravitational constant, Gravitational 
constants associated with electromagnetic and strong interactions.  

 
 
Novelty and  Significance of this paper 
 
By introducing two pseudo gravitational 

constants, we make an attempt to combine the old 
‘strong gravity’ concept with ‘Newtonian gravity’ 
and try to understand and re-interpret the 
constructional features of nuclei, atoms, and neutron 
stars in a unified approach and finally making an 
attempt to estimate the Newtonian gravitational 
constant from the known elementary atomic and 
nuclear physical constants.  

 
Scope of this paper 
 
Considering the two pseudo gravitational 

constants assumed to be associated with strong and 
electromagnetic interactions,  

1. Currently believed generalized physical 
concepts like, proton-electron mass ratio, 

neutron life time, weak coupling constant, strong 
coupling constant, nuclear charge radius, root 
mean square radius of proton, melting points of 
proton and electron, nuclear charge radii, nuclear 
binding energy, nuclear stability, Bohr radius of 
hydrogen atom, electron and proton magnetic 
moments, Planck’s constant, atomic radii, molar 
mass constant and Avogadro number etc. can be 
reviewed in a unified approach and can be 
simplified.  

2. Significance of the ratio of nuclear 
gravitational constant and Newtonian gravitational 
constant can be understood and thereby magnitude 
of the Newtonian gravitational constant can be 
estimated in a unified approach. 

3. Proceeding further, considering the ratio of 
nuclear gravitational constant and Newtonian 
gravitational constant, neutron star mass can be 
understood
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Table  – Topics of this paper 
 

S.No Section heading 
1 Introduction 
2 Two basic assumptions of  final unification 
3 Important points pertaining to ‘Schwarzschild interaction’ and  ‘final unification’ 
4 To understand the role of Newtonian gravitational constant in nuclear physics 
5 To understand the Planck’s constant  
6 Nuclear charge radius  and  root mean square radius of proton 
7 To fit and understand the Fermi’s weak coupling constant 
8 Melting points of proton and electron 
9 To fit and understand the atomic radii 
10 ‘System of units’ independent Avogadro number and Molar mass unit  
11 To fit and understand the atomic radii 
12 Mass and radius of a neutron star 
13 Fitting and understanding the neutron life time  
14 Understanding the Bohr radius, Reduced Planck’s constant and magnetic moments of electron and proton 
15 Understanding the nuclear charge radii 
16 Discussion 
17 Conclusion 
 
 
1. Introduction 
 
Even though ‘String theory’ models and 

“quantum gravity’ models [1,2] are having a strong 
mathematical back ground and sound physical basis, 
they are failing in implementing the Newtonian 
gravitational constant [3] in atomic and nuclear 
physics and thus seem to fail in developing a 
‘workable’ model of final unification.   

According to Roberto Onofrio [4], weak 
interactions are peculiar manifestations of quantum 
gravity at the Fermi scale, and that the Fermi 
coupling constant is related to the Newtonian 
constant of gravitation. In his opinion, at atto-meter 
scale, Newtonian gravitational constant seems to 
reach a magnitude of 22 3 -1 -28.205 10 m kg sec . In this 
context, in physics literature [5,6,7] one can see 
number of papers on ‘strong gravity’. Based on the 
old and ignored scientific assumption put forward 
by Nobel laureate Abdus Salam, we developed and 
compiled many interesting relations assumed to be 
connected with nuclear physics, atomic physics and 
astrophysics. We are sure to say that, each and every 
relation is having its own mathematical beauty and 
we are working on deriving them at fundamental 
level. The main issue is: to understand the basics of 
final unification from hidden, unknown and un-
identified physics! It is true that, from unification 
point of view, one cannot accept any relation 
without a derivation. It is also true that, practically, 

subject of ‘true unification’ is beyond the scope of 
current human understanding. Based on the 
concepts of : ‘workability’  and ‘something is better 
than nothing’, we appeal the readers to go through 
the following sections in a true scientific spirit. 

Clearly speaking, in this paper, by introducing 
two pseudo gravitational constants, we make an 
attempt to combine the old ‘strong gravity’ concept 
with ‘Newtonian gravity’ and try to understand and 
re-interpret the constructional features of nuclei, 
atoms, and neutron stars in a unified approach and 
finally making an attempt to estimate the Newtonian 
gravitational constant from the known elementary 
atomic and nuclear physical constants.  

 
2. Two basic assumptions of  final unification 
 
In our recent publication [8] (Proceedings of 

International Intradisciplinary Conference on the 
Frontiers of Crystallography (IICFC-2014)), 
qualitatively we proposed the following two 
assumptions with many possible applications. It 
may be noted that, current main stream physics is 
very silent on implementing the Newtonian 
gravitational constant in current microscopic 
physics. In this context, thinking that, ‘something is 
better than nothing’, we developed this subject. We 
are at ‘half the way’ and are sure to say that the 
subject under development is fruitful and needs 
experts’ hands-on experience in ripening it.  
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Assumption-1:  Magnitude of the gravitational 
constant associated with the electromagnetic 
interaction  is,   37 3 -1 -22.375 0.002 10  m kg seceG     . 

Assumption-2: Magnitude of the gravitational 
constant associated with the strong interaction is, 

  28 3 -1 -23.328 0.002 10  m kg secsG    . 
Note-1:  We choose the following semi 

empirical relations as ‘reference relations’ for 
constructing other semi empirical relations. 
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where pl NM c G  is the Planck mass.  

Note-2: It may be noted that, with reference to 
the operating force magnitudes, protons and 
electrons cannot be considered as ‘black holes’. But 
protons and electrons can be assumed to follow the 
relations that black holes generally believed to 
follow. Clearly speaking, in the study of black 
holes, Newtonian gravitational constant NG  plays a 
major role, whereas in the study of elementary 
particles, sG  and eG  play the key role. For detailed 
information, see the following section. 

Note-3: Considering the above two assumptions,  
1) Currently believed generalized physical 

concepts like, proton-electron mass ratio, neutron 
life time, weak coupling constant, strong coupling 
constant, nuclear charge radius, root mean square 
radius of proton, melting points of proton and 
electron, nuclear charge radii, nuclear binding 
energy, nuclear stability, Bohr radius of hydrogen 
atom, electron and proton magnetic moments, 
Planck’s constant, atomic radii, molar mass constant 
and Avogadro number etc. can be reviewed in a 
unified approach and can be simplified.  

2) Significance of the ratio of nuclear 
gravitational constant and Newtonian gravitational 
constant can be understood and thereby magnitude 
of the Newtonian gravitational constant can be 
estimated in a unified approach. 

3) Proceeding further, considering the ratio of 
nuclear gravitational constant and Newtonian 
gravitational constant, neutron star mass can be 
understood.  

 

3. Important points pertaining to 
‘Schwarzschild interaction’ and  ‘final 
unification’ 

 
1) If it is true that c  and NG  are fundamental 

physical constants, then  4
NGc

 
can be considered 

as a fundamental compound constant related to a 
characteristic limiting force [9]. 

2) Black holes are the ultimate state of matter’s 
geometric structure. 

3) Magnitude of the operating force at the 
black hole surface is of the order of  4

NGc . 
4) Gravitational interaction taking place at 

black holes can be called as ‘Schwarzschild 
interaction’. 

5) Strength of ‘Schwarzschild interaction’ can 
be assumed to be unity. 

6) Strength of any other interaction can be 
defined as the ratio of operating force magnitude 
and the classical or astrophysical force 
magnitude  4

NGc . 
7) If one is willing to represent the magnitude 

of the operating force as a fraction of  4
NGc

        
i.e.  4 times of NGX c , where 1X  ,  then 

 
 

 
4

4

 times of 
Effective  N N

N

G G

G

X c
X G

Xc
         (3) 

If  X   is very small,  1 X  becomes very large. 
In this way, X  can be called as the strength of 
interaction. Clearly speaking, strength of any 
interaction is  1 X  times less than the 
‘Schwarzschild interaction’ and effective G  
becomes  G X . 

8) With reference to Schwarzschild interaction, 
for electromagnetic interaction, 482.811 10X    and 
for strong interaction, 392.0 10 .X    

9) Characteristic operating force corresponding 
to electromagnetic interaction is   4 43.4 10  NeGc  

 
and characteristic  operating  force corresponding to 
strong interaction is   4 242600 N.sGc   

10) Characteristic operating power corres-
ponding to electromagnetic interaction is  
 5 10990 J/seceGc 

 and characteristic  operating  
power corresponding to strong interaction is  
 5 137.27 10  J/secsGc    
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11) As      4 4 4,e s NG G Gc c c     and 
     5 5 5, ,e s NG G Gc c c     protons and electrons can 

not be considered as ‘black holes’, but may be 
assumed to follow similar relations that black holes 
generally believed to follow. 

12) According to S.W. Hawking [10], 
temperature of black hole takes the following 
expression. 

3

8B
N B B

cT
G k M


                       (4) 

 
where  BM  and  BT  represent the mass and 
temperature of a black hole respectively. It may be 
noted that, by combining the views of Hawking and 
Abhas Mithra [11] and by considering the proposed 
assumptions, melting points of elementary particles 
can be estimated and fitted.     

 
4. To understand the role of Newtonian 

gravitational constant in nuclear physics 
 
Let,  
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(5) 
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s
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(6) 

 
After developing many relations, to a very good 

accuracy,  it is noticed that,  
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In a simplified picture, 
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In this way, one can see the combined role of  
 ,s NG G  in understanding the mystery of rest 
masses of proton and electron. By fixing the 
magnitude of  sG , magnitude of  NG  can be 
fixed. 

 
5. To understand the Planck’s constant  
Proceeding further, it is possible to show that,   
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Note that, these two relations are free from 

arbitrary coefficients and seems to be connected 
with quantum theory of radiation. With further 
research, if one is able to derive these two relations, 
unification of quantum theory and gravity can be 
made practical and successful. Based on relation (9) 
and by considering the recommended values of 
elementary physical constants [12, 13], 
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From this data it is very clear to say that, 
accuracy of NG  seems to depend only on the ratio of  

.h 
 
 

 It is a very important point to be noted here. In 

the forgoing sections, we use these values. 
 
6. Nuclear charge radius  and  root mean 

square radius of proton 
Nuclear charge radius [14] can be expressed 

with the following relation. 
 

15
0 2

2
1.239290976 10  ms pG m

R
c

         (12) 

 
Considering this relation (12), magnitude of NG  

can be estimated with the following relation.  
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By measuring the nuclear charge radii of stable 
atomic nuclides,  0 , sR G  both can be estimated.  

Root mean square radius of proton [12,13] can 
be expressed with the following relation. 

15
2

2
0.8763110532 10  ms p

p
G m

R
c

       (14) 

Considering this relation (14), magnitude of NG  
can be estimated with the following relation.  
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See the following table-1.

    
Table 1 –  RMS radius of proton Vs. Newtonian gravitational constant  

 

RMS radius of proton   fm  Newtonian gravitational constant  -11 3 1 210 m kg sec   

0.8775 6.697994316 
0.8768 6.68731232 
0.8758 6.672067113 
0.8751 6.661405819 

 
 

7. To fit and understand the Fermi’s weak 
coupling constant 

To a great surprise, it  is noticed that [12,13],   
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From above relations,  
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Based on this relation (17), magnitude of NG  

can be estimated with the following relation.

 
10 2

11 3 1 2
2 6.659637481 10  m kg sec

4
e F

N
p

m G cG
m

     
           

                                         (18) 

 
where  35 -2 62 31.1663787 10 GeV 1.435850781 10  JmFG c     . 
 

 
8. Melting points of proton and electron 
From above concepts and relations, melting 

points of proton and electron can be estimated with 
the following relations.  

 
 
 

Melting point of proton,  
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B s p

cT
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This relation can be applied to quarks also. It 
may be noted that, RHIC have tentatively claimed to 
have created a quark–gluon plasma with an 
approximate temperature of 4 trillion degree Kelvin. 
A new record breaking temperature was set by 
ALICE at CERN on August, 2012 in the ranges of 
5.5 trillion degree Kelvin. In June 2015, an 
international team of physicists have produced 
quark-gluon plasma at the Large Hadron Collider by 
colliding protons with lead nuclei at high energy 
inside the supercollider’s Compact Muon Solenoid 
detector at a temperature of 4 trillion degree Kelvin 
[15]. These experimental temperatures are close to 
the predicted melting temperatures of Proton, up, 
down and strange quarks and seem to support the 
proposed pseudo gravitational constant  assumed to 
be associated with strong interaction.  Melting point 
of electron, 

3
0.3786 Million K

8electron
B e e

cT
k G m

 
      (20) 

 
Melting point of electron is 38827 times less 

than proton melting point. These two estimations are 
for experimental verification.   

 
9. Nuclear stability and binding energy   
Proton-neutron stability  [16] can be understood 

with the following relation  
Let sA   be the stable mass number of .Z  

     2 22 2 2 0.0016 2   Or

4 1 1 where  is any mass number
4

sA Z k Z Z Z

kAZ A
k
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where 3 1.605 10s p eG m m
k

c
 

   
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. See  colum-2 

of table-2.   With even-odd corrections, accuracy 
can be improved. Close to stable atomic nuclides, 
nuclear binding energy [17] can be understood with 
the following relation. 
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where pR  is the RMS radius of proton.  
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represent the respective   

 
self binding energies. See the following  table-2.

    
 

Table 2 – Estimated stable mass numbers and their corresponding nuclear binding energy 
 

Proton 
number 

Estimated Stable mass 
number 

Estimated binding 
energy in MeV 

 

Proton number Estimated Stable 
mass number 

Estimated binding 
energy in MeV 

6 12. 2 88.05 60 143.0 1176.4 

16 33.6 291.6 70 171.4 1376.6 

26 56.3 493.4 82 207.0 1616.7 

40 90.2 775.3 92 238.2 1816.7 

50 116.0 976.0 100 264.0 1976.5 

 
 

10. ‘System of units’ independent Avogadro 
number and Molar mass unit  

If, atoms as a whole believed to exhibit 
electromagnetic interaction, then molar mass 
constant and Avogadro number, both can be 
understood with the following simple relation. 

 

   2 2
e atom N moleG m G M           

 
(23) 

where atomm  is the unified atomic mass unit   and 

moleM  is the molar mass unit  or gram mole.   
Thus it is very clear to say that, directly and 

indirectly ‘gravity’ plays a key role in understanding 
the molar mass unit. 

 
mole e e

mole atom
atom N N

M G G
M m

m G G
             (24) 
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 23where 5.96 10  and 0.00099 <  0.001  kge
mole

N

G
M

G
  

 
Based on these relations, “independent of system of 
units” and “independent of ad-hoc selection of 
exactly one gram”, it may be possible to explore the 
correct physical meaning of the famous ‘Molar mass 
unit’ and ‘Avogadro number’ in a unified approach 
[18].  

 
11. To fit and understand the atomic radii 
Considering the geometric mean of the two 

assumed gravitational constants associated with 
proton and ‘atom as whole’, atomic radii can be 
fitted in the following way. By following the 

periodic arrangement of atoms and their electronic 
arrangement, accuracy can be improved.  

 

1 3
2 2
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2 2
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G m G m
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c c
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     
  

    

  (25) 

 
 where sA   is the stable atomic mass number of the 
atom,  nm   is the average mass of nucleon and atomm   
is the unified atomic mass unit. Note that, this 
relation resembles the famous relation for nuclear 
radii proposed by  Rutherford [19].  See the 
following table-3. 

    
 
Table 3 – Estimated atomic radii 
 

Proton 
number 

 

Stable Mass 
number 

Estimated 
atomic radii  
(pico meter) 

Reference data 
[20]   (pico 

meter) 
 

Proton 
number 

 

Stable Mass 
number 

Estimated atomic 
radii  (pico meter) 

Reference 
data [20]   

(pico meter)
1 1 33.0 31  40 90 147.9 175 
6 12 75.6 76  47 107 156.7 145 
16 32 104.8 105  60 142 172.2 201 
27 57 127.0 126  70 172 183.5 187 
28 62 130.6 124  81 203 193.9 145 
29 63 131.3 132  89 227 201.3 215 
30 66 133.4 122  92 238 204.5 196 

 
 

12. Mass and radius of a neutron star  
A) Mass of neutron star 
According to G. Srinivasan [21]:  “We began by 

remarking that the real stumbling block in 
determining the maximum mass of neutron stars is 
the equation of state of neutron star matter at 
densities above the nuclear density ~2.5x1014 g.cm-3. 
After four decades of strenuous effort by several 
groups there is still considerable uncertainty 
concerning the equation of state: is the matter in the 
core of the star “stiff” or “soft”! This depends on 
whether or not Bose-Einstein Condensates, such as 
pion condensate or kaon condensate, occur at 
supranuclear densities, and whether asymptotically 
free quark matter occurs at even higher densities. 
Till this question is resolved all one can say is that 
the maximum mass of neutron stars is somewhere in 
the range (1.5 to 6.0) solar masses. It seems to us 
that the best one can do at present is to appeal to 
observation”.  

Let  ,NS nM m represent masses of neutron  star 
[21] and neutron respectively. 
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(26) 

 
Alternatively, it is also noticed that,  
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(27) 
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Interesting point to be noted is that, ratio of  
neutron star mass and Planck mass is of the order of 

s

N

G
G

 
 
 

.    

 3
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(28) 

 
From astro-particle physics point of view, it can 

be given some consideration.  
Note: Currently believed upper mass limit of 

Super massive black holes (SMBHs) [22] can be 
fitted with the following relation. 
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   (29) 

 
Point to be noted is that, ratio of  upper limit of 

galactic black hole  mass and Planck mass is of the 

order of e

N

G
G

.    

 
B) Radius of neutron star 
 
Particle data group [13] recommended value of 

magnetic radius of neutron is around 0.86 fm. 
Qualitatively this can be compared with the 
following relation.  

 

2
2

0.877 fm. s nG m
c

                  (30) 

 
Let  ,NS nR R  represent the radii [23,12] of 

neutron star and neutron respectively.  
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(31) 

 
It may be noted that, observed masses of neutron 

stars are of the order of 2 Solar masses and radii are 
of the order of 11 km. In this context, important 
point to be noted is that, ratio of  neutron star radius 

and neutron’s characteristic radius is of the order of 
s

N

G
G

. It is also possible to say that, ratio of  

neutron star radius and Planck size is of the order of 
s

N

G
G

 
 
 

. 

It can be expressed in the following way.  
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(32) 
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where 3 3.61 fmsG
c


  can be called as the nuclear 

Planck length. This can be compared with     
neutron’s positively charged core of radius ~3 fm.  
Now the above relation (33) can be re-expressed in 
the following way.  

 3
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Nuclear Planck length
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R G
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(34) 

 
13. Fitting and understanding the neutron 

life time  
It may be noted that, during beta-decay, by 

emitting one electron and one neutrino, neutron 
transforms to proton. 

Let, nt  be the life time of neutron,  nm  be the 
rest mass of neutron and  n pm m  be the mass 
difference of neutron and proton. Then, 
quantitatively it is possible to show that,   
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             (35) 

 
Very interesting observation is that, the three 

gravitational constants seem to play a simultaneous 
role in deciding the neutron decay time and is for 
further analysis. Now,  

 
1

222 e s n
n n p

N

G G m
t m m c

G c
  

          
           (36) 
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With 1-2 % error, this obtained value can be 

compared with recommended [13] and experimental 
[24,25] neutron life times of  878 to 888  sec .  

With reference to weak coupling constant and 
proposed gravitational constant associated with 
strong interaction, 
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Qualitatively, if one is willing to define the well 

believed strong coupling constant with the following 
relation, 
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error in estimation of neutron life can be minimized 
and can be expressed with the following relation. 
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(41) 

 
With reference to recommended value [13] of  

0.1185 0.0006s   , obtained 881.422 secnt   
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(42) 

 

With reference to recommended value 
[13,26,27] of   880.3 1.1nt    sec , obtained 

0.1188s   
 
14. Understanding the Bohr radius, Reduced 

Planck’s constant and magnetic moments of 
electron and proton 

Energy conservation point of view, qualitatively 
and quantitatively, we noticed the following 
relation.  
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(43) 

 
where 0 0.53 Aa    is the Bohr radius of hydrogen 

atom and 2 0.61965 fms pG m

c


 
and

 
0 2

2
1.24 fms pG m

R
c

   is the nuclear charge radius. 

Now, potential energy of electron corresponding to 
Bohr radius can be expressed with the following 
relation. 
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(44) 

Now the basic question to be understood is : 
How to understand the ‘discreteness’?. Important 
quantum mechanical result of Bohr’s theory is that, 
maximum number of electrons that can be 
accommodated in any orbit is  22n  where 

1,2,3,..n  . Based on this result, it can be interpreted 
that, in any orbit, probability of finding any one 

electron out of 22n electrons is 2
1

2n
 
 
 

. By following 

this interpretation and with reference to electron’s 
total energy of 13.6 eV, ‘discrete total energy’ of 
electron in any orbit can be expressed with the 
following relation.   
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where 0 1.24 fm.R   

Clearly speaking, in any orbit,   
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Based on  relation (43) and with reference to 

Bohr’s theory of hydrogen atom,  
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Now, revolving electron’s magnetic moment can 

be expressed as follows. 
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Proceeding further, with reference to strong 

interaction and the proposed strong interaction 
gravitational constant, magnetic moment of proton 
can be expressed with the following relation. 

 

26 -11.488142 10  J.Tesla
2
s p

p
eG m

c
    

     
 

 

 

(49) 

where   is a coefficient of the order of unity and its 
approximate value is 0.952.  

It may be noted that, by considering a 

proportionality ratio of p

e




 
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, planet earth’s dipole 

magnetic moment can be expressed with the 
following relation.   
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(50) 

 
With further study and analysis, if one is willing 

to consider the proportionality ratio as a function of 
planetary physical and magnetic parameters, it may 
be possible to understand the weak and strong 
planetary magnetic moments.   

 
15. Understanding the nuclear charge radii  
For   atomic number greater than 23, nuclear 

charge radii  [30] can be fitted with the following 
relation.  
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where  23Z 
 
and

 
2 0.61965 fms pG m

c


 
This relation seems to be best applicable for 

medium, heavy and super heavy atomic nuclides. 
See the following table-4. 

By refining the relation (51) with reference to 
lower atomic numbers  and by knowing the nuclear 
charge radii of various atomic nuclides,  magnitude 
of  sG  can be estimated from nuclear experimental 
data.
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Table 4 – To fit the nuclear charge radii  
 

Proton number Mass number Neutron number 
A-Z 

Estimated charge radii 
from relation (51) 

Charge radii from 
reference [30] 

%Error w.r.t relation 
(51) 

20 40 20 3.364 3.4776 3.27 
21 45 24 3.458 3.5459 2.49 
22 48 26 3.522 3.5921 1.96 
23 51 28 3.583 3.6002 0.47 
24 52 28 3.621 3.6452 0.66 
25 55 30 3.680 3.7057 0.70 
26 56 30 3.716 3.7377 0.59 
27 59 32 3.771 3.7875 0.43 
28 60 32 3.806 3.8118 0.16 
29 63 34 3.859 3.8823 0.61 
30 66 36 3.910 3.9491 0.99 
31 69 38 3.960 3.9973 0.93 
32 72 40 4.009 4.0576 1.20 
33 75 42 4.057 4.0968 0.98 
34 76 42 4.087 4.1395 1.27 
35 79 44 4.133 4.1629 0.73 
36 86 50 4.207 4.1835 -0.57 
37 87 50 4.236 4.1989 -0.88 
38 88 50 4.264 4.224 -0.95 
39 89 50 4.292 4.243 -1.14 
40 90 50 4.319 4.2694 -1.15 
41 93 52 4.360 4.324 -0.83 
42 92 50 4.371 4.3151 -1.30 
44 104 60 4.491 4.5098 0.41 
45 103 58 4.503 4.4945 -0.20 
46 108 62 4.554 4.5563 0.06 
47 109 62 4.578 4.5638 -0.31 
48 114 66 4.627 4.6087 -0.39 
49 115 66 4.650 4.6156 -0.75 
50 120 70 4.697 4.6519 -0.98 
51 121 70 4.720 4.6802 -0.86 
52 130 78 4.787 4.7423 -0.95 
53 127 74 4.788 4.75 -0.81 
54 136 82 4.853 4.7964 -1.18 
55 133 78 4.854 4.8041 -1.04 
56 138 82 4.897 4.8378 -1.22 
57 139 82 4.918 4.855 -1.31 
58 140 82 4.940 4.8771 -1.28 
59 141 82 4.961 4.9174 -0.88 
60 142 82 4.981 4.9123 -1.41 
62 144 82 5.022 4.9524 -1.41 
63 145 82 5.042 4.9663 -1.52 
64 160 96 5.130 5.1734 0.83 
65 159 94 5.141 5.06 -1.60 
66 148 82 5.101 5.0455 -1.09 
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Proton number Mass number Neutron number 
A-Z 

Estimated charge radii 
from relation (51) 

Charge radii from 
reference [30] 

%Error w.r.t relation 
(51) 

67 165 98 5.198 5.2022 0.08 
68 170 102 5.235 5.2789 0.83 
69 169 100 5.245 5.2256 -0.38 
70 176 106 5.290 5.3215 0.58 
71 175 104 5.300 5.37 1.30 
72 178 106 5.327 5.3371 0.18 
73 181 108 5.354 5.3507 -0.06 
74 184 110 5.381 5.3658 -0.28 
75 185 110 5.399 5.3596 -0.73 
76 192 116 5.441 5.4126 -0.53 
77 191 114 5.451 5.3968 -1.00 
78 194 116 5.476 5.4236 -0.97 
79 197 118 5.502 5.4371 -1.18 
80 198 118 5.519 5.4463 -1.33 
81 205 124 5.559 5.4759 -1.52 
82 208 126 5.584 5.5012 -1.50 
83 209 126 5.601 5.5211 -1.44 
84 208 124 5.610 5.5584 -0.92 
86 212 126 5.650 5.5915 -1.05 
87 212 125 5.662 5.5915 -1.27 
88 214 126 5.682 5.6079 -1.33 
90 232 142 5.773 5.7848 0.20 
92 238 146 5.818 5.8571 0.66 
94 239 145 5.846 5.8601 0.24 
95 243 148 5.872 5.9048 0.56 
96 244 148 5.887 5.8429 -0.75 

 
 

16. Discussion  
 
It may be noted that,  
1) Mostly, old ‘strong gravity’ models seem to 

focus on understanding ‘quark confinement,’ ‘basic 
hadron mass spectrum’ and ‘coupling constants’. 

2) In this paper, we tried our level best in 
implementing the Newtonian gravitational constant 
along with two pseudo microscopic gravitational 
constants and proposed many interesting 
applications starting from ‘electron mass’ and 
‘neutron star mass’.  

3) Relations (5) to (8) show the potential and 
combined role of (Gs, GN) in nuclear and particle 
physics. 

4) Relations (9) and (10) show the potential 
role of  (Gs) in quantum theory of radiation. 

5) Relations (12) to (23) seem to show the 
potential applications of  (Gs, Ge) in nuclear and 
particle physics. 

6) Relations (23), (24) and (25) clearly 
demonstrate the combined role of (Gs, Ge) in 
understanding the Avogadro number, molar mass 
constant and atomic radii. 

7) Relations (26) to (34) seem to extend the 
scope of applicability of the proposed assumptions 
in astrophysics starting from neutron stars to 
galactic nuclei.  

8) Relations (35) to (39) seem to play a key role in 
understanding the combined role of (Gs, Ge, GN).  

9) Relations (40) to (42) seem to play a key 
role in understanding the strong coupling constant 
and can be estimated from neutron life time and 
neutron-proton mass difference. 

10) Relations (43) to (49) seem to play a  key 
role understanding the origin of quantum mechanics 
and magnetic moments of electron and proton. 

11) Relation (50) seems to play a key role in 
understanding the dipole  magnetic moment of 
planet earth in a unified approach. 
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12) Relation (51) seems to play a key role in 
fitting and understanding the role of  Gs in nuclear 
charge distribution.  

13) Qualitatively and quantitatively in a 
heuristic approach we developed many 
characteristic relations among micro-macro physical 
constants with utmost possible accuracy.   

14) Proceeding further, we proposed interesting 
and accurate analytical relations for estimating the 
Newtonian gravitational constant in a meaningful 
way and this procedure is beyond the scope of 
current research paradigm. One must admit this fact. 

15) We admit the fact that, in this paper, we 
could not provide the required ‘back ground 
physics’ for understanding the proposed semi 
empirical relations. At the same time, one must 
accept the fact that, we presented all possible 
relations and relevant information using by which 
theoretically, one may be able to develop a unified 
and workable model of unification. We would like 
to inform that, 

1) Based on the hierarchy  of elementary 
physical constants, 

2) Based on dimensional analysis, 
3) Based on trial-error methods, 
4) Based on simple mathematical functions, 
5) Based on simplified computer programs,  
6) Based on data fitting and 
7) Based on data prediction  
so far we could publish more than 20 papers on 

this subject. We admit that this procedure is against 
to the current ‘scientific standards’ and ‘scientific 
procedures’. In this context, we would like to stress 
the fact that, even though string theory models are 
having  strong mathematical back ground and sound 
physical reasoning, they are badly failing in 
coupling the gravitational and nuclear physical 
constants. Here, the problem is with ‘our 
understanding and our perception’ but not with 
‘scientific standards and procedures’. In the 
development of science and engineering, ‘data 
fitting’ and ‘workability’ are the two essential tools 
using by which physical models can be generated 
and validated in a progressive manner.   

 
17. Conclusion  
 
Considering the wide applicable range of the 

proposed two assumptions, we are confident to say 
that, with further research and analysis, ‘hidden and 
left over physics’ can easily be explored. In this 
context, we would also like to stress the fact that, 
with current understanding of String theory [28] or 

Quantum gravity [29], qualitatively or quan-
titatively, one cannot implement the Newtonian 
gravitational constant in microscopic physics. This 
‘draw back’ can be considered as a characteristic 
‘inadequacy’ of modern unification paradigm. 
Proceeding further, with reference to String theory 
models and Quantum gravity models, proposed two 
pseudo gravitational constants and presented semi 
empirical relations can be given some consideration 
in developing a ‘workable model’ of ‘final 
unification’.  
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