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Difference scheme stability investigation for model of barotropic viscous gas 

Abstract: In this paper, the technique of convergence of research and the stability difference schemes for 
the equations of gas dynamics in the presence of an electric field. The work consists in the strict 
mathematical definition of the conditions of stability and convergence of difference schemes, which relate 
to the long posed problems of computational mathematics. The studies enable significant progress in the 
study of the convergence and stability of difference schemes for gas dynamic tasks. The results of the 
thesis could be used for a wide class of problems of mathematics and mechanics. In the proof of the 
stability and convergence of difference schemes used by well-known theorems and inequality. All results 
are formulated as theorems. 
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Introduction 

Many mathematical modern science and 
technology problems arising in practice, related to 
the solution of the equations of gas dynamics. 
Despite the numerous number of methods currently 
used to solve these equations, work on their further 
study continues to be important and relevant. 
Therefore, the problem encountered in the study of 
the mechanics of the problems are of great scientific 
and practical interest, as their decision is related to 
the further development of the theory of differential 
equations and difference schemes. With their help, 
we can solve many problems of mechanics, physics 
and engineering, which are, in one way or another, 
to the equations of gas dynamics. Such as the 
aerodynamics of aircraft, astrophysics, weather 
forecast and more.In practice, more common 
problem when the gas-dynamic flow affect various 
additional factors, such as electric, magnetic and 
gravitational fields, heat conduction and electrical, 
chemical, and others. Given these events, it follows 
a lot of problems and difficulties in the correct 
mathematical formulation and decisions. The 
solution of such problems analytical method is not 
always possible, due to the nonlinearity and 
complexity of the equations. The mathematical 
problem of determining the solutions of the 
equations describing the motion of a continuous 
medium is reduced to finding the unknown 

functions of three space variables and time, for 
example, speed, volume, pressure, temperature, 
density, electric and magnetic intensity. This 
problem is often very difficult, and it requiresto 
bring in additional solutions schematization 
associated with specific physical problems, and 
make valid simplify their mathematical formulation. 
Among the gas dynamics models important place 
occupied by the system of Navier-Stokes equations 
for viscous compressible fluid. The model takes into 
account both the compressibility and thermal 
conductivity and viscosity of the medium. This 
system is very complicated, it has a complex type, 
and the equations included in it, the non-linear. 
Therefore often used and other more simple model 
of a viscous gas. In particular, if we consider the 
barotropic motion, the energy equation is detached, 
although in this case, the system retains the main 
features - non-linearity and a component type. 

Problem description and statement 

This section describes the motion of a viscous 
heat-conducting gas and ions of one species in an 
electric field. The flow region    0 1,  has 
impermeable walls. This chapter is devoted to the 
study of convergence and stability of a difference 
scheme for electric gas dynamic model, without 
taking into account the diffusion coefficient of ions, 
i.e., and ion mobility factor has the form b b1  /  ,
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b = const > 0. In this case we consider the so-called 
pump mode, when the relative velocity of the ions 

0 bEurelative  everywhere in  Q TT   0, . 
When you study the issues of sustainability and 

convergence of the problem is convenient to use 
Lagrangian coordinates. Keeping to the mass 
Lagrangian variable the same notation, denoting the 
specific volume of the system of equations can be 
written as follows: 
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Conditions at the boundaries x=0, x=1 and the 

initial data are 
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   ,0, 0 xuxu     ,0, 0 xvxv   

 
   ,0, 0 xx      ,0, 0 xExE  x       (7) 

 
And    xxv 00 ,   - are strictly positive and 

bounded functions. 
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The difference scheme for the problem 
 
To construct a difference scheme, approximately 

describing this differential problem is necessary to 
replace the differential region of the argument 
continuous variation  of a discrete area of change 
and replace the continuous functions to grid 
functions and set the difference analogue for the 
boundary and initial conditions. 

In the area  TQT ,0  we introduce the 

rectangular grids thQ  and 1
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Approximating the system of electric gas dynamics 
differential equations (1.5) - (1.7) with the 
difference analogs of derivatives we consider the 
following difference scheme: 
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Difference equations (1) - (4) approximate the 

differential equation (5), respectively, with orders 
 thO 2 ,    thO  ,   thO 2 ,  thO  . 

 
Upper and lower bounds for the difference 

analog of the specific volume 
 
Due to the fact that the system (1.5) is non-
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Let us show that the inequality under conditions  b 

> 0, Ei x
0 0 ,  where Ei x

n 1 0, i = 1, ..., N, n = 0, ..., 

M – 1. Let us note Ei x
n

i
n 1 1 ,where i

0 0 .  Let  

us prove that i
n 1 0for all iand n. Take the difference 

derivative forward from both sides of the equation (11). 
Then replace and multiply on equality, sum over from 0 
to, using (12), we can write 
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Then, by replacing we obtain 
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By the following amounts apply the formula for summation by parts 
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And we have 
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Using previous estimates we obtain 
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j N 1,..., , n M 0 1,..., .        (23) 

 
Using Granuoll’s lemma, we conclude that  
 

M Mv
n 1

1  или  v Mi
n

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1
1/ ,       (24) 

i N 1,..., , n M 0 1,..., .  
 
Conclusion 
 
The study of fluid dynamics problems for a wide 

class of their applicability in a variety of devices 
electric gas dynamic generator, ion-convection 
pump, accelerators, feeders, cages in which the 
conductive medium moves through the channel or 
pipe in the presence of an electric field, continues to 
be important and relevant. This thesis studied the 
questions of convergence and stability of implicit 
difference schemes for one-dimensional problems 
gas dynamics. The investigations are as follows: 

  constructed difference scheme for model of 
barotropic viscous gas in the electric field; 

 obtained a priori estimates of the first 
decision of a difference scheme for model of 
barotropic viscous gas in the electric field; 

 a priori estimates for higher derivatives of the 
solution of a difference scheme for model of 
barotropic viscous gas in the electric field; 

 the convergence and stability of a difference 
scheme for model of barotropic viscous gas in the 
electric field; 
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