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Communication cascade processes with Markov chains 

 
 

Abstract: The work executed within the framework of cascade-probability method, the essence of which 
is to obtain and further use of cascade-probability functions (CPF) for the different particles. CPF sense 
the probability that a particle generated at a certain depth h’ reaches a certain depth h after the n-th 
number of collisions. We have considered the interaction of ions with solids and communication 
processes of radiation defect with Markov processes and Markov chains. Displaying obtain recurrence 
relations for the simplest of CPF Chapman-Kolmogorov equations. In this case the particle after the 
collision does not change its direction of movement, the flow rate is independent of time, and hence the 
penetration depth. recurrence relations are also obtained for the RAF taking into account losses of energy 
to the ions of the Chapman-Kolmogorov equation, the intensity of the flow depends on the depth of 
penetration. 
Key words: cascade-probability, ions, defect formation, Markov chain, Markov processes. 

 
 
Introduction 
 
It should be noted that the previously [1,2] 

connection issues cascade-probability functions, the 
energy spectra of primary ejected atoms (PEA), the 
concentration of defects in C, and the secondary 
particle fluxes N, integral multiplicities and others 
not considered a Markov process. The study of these 
relationships it possible to expand their knowledge 
about the processes taking place in materials when 
passing through these high-energy particles and a 
different look at these phenomena, in particular, 
with common positions. Practically all hitherto 
obtained analytical expressions for the CPF, the 
energy spectra of secondary particles and passing N 
and concentration of defects C and other can be 
derived from the Chapman-Kolmogorov equation, 
set the appropriate physical and mathematical 
models. 

The processes of the passage of particles 
through a substance and the formation of radiation-
induced defects in it can be viewed as a Markov 
process continuous in time and discrete in the 
number of collisions. The final expression for , N 
and C are represented as sums of integrals and 
products of the corresponding conditional 
probabilities and the normalization coefficients, 
depending on the type and energy of the particles, 

reaction channels, differential and integral cross 
sections for interaction, energy loss, the elementary 
act of the parameters of the medium density, etc.. 

 
The main results  
 
Consider the process of interaction of charged 

particles with matter in the generation of radiation 
defects in solids irradiated by electrons, protons, 
alpha particles, and ions.  

It is assumed that the primary particle (electron, 
proton, alpha particle or ion) formed at a depth h' 
cooperates with the material as follows: 

1. The charged particle loses energy by 
ionization and excitation (the main type of energy 
loss). These losses are considered to be continuous 
in the depth of the passage of particles. 

2. The primary particles are formed of PEA, and 
hundreds of interactions with the electrons of the 
medium (ionization losses) occurs in approximately 
several interactions on the formation of PEA. 

3. PEA forms Frenkel pairs (vacancy and 
interstitial atom) in the case of electron irradiation 
and cascading area in the case of the proton, alpha 
and ion irradiation. 

4. For the electron is considered relativistic case, 
since the kinetic energy of the electrons is 
comparable to or greater than the energy of the 
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electrons of peace, interaction cross section is taken 
in the form of a cross section of the McKinley-
Feshbach or Mott, the ionization losses are 
calculated from the Bethe-Bloch formula. 

5. For protons, alpha particles, and ions 
considered non-relativistic case, the interaction 
cross section is selected as a section of Rutherford, 
the ionization losses of protons and alpha particles 
are calculated from the Bethe-Bloch formula for 
ions are taken from the table parameters of spatial 
distribution of the ion-implanted impurities 
(Kumakhov-Komarova). 

Let us consider system S, representing process 
of interaction of particles with matter and tests one, 
two, three collisions. Such a process is a stochastic 
process with a discrete number of collisions and 
continuous in time, and hence the particle 
penetration depth. The transitions of the system S 
from state to come under the influence of some 
event streams. As we consider the ordinary event 
streams without after effects, they are Poisson. If the 
events form a Poisson flow, the number of events 
that fall at any time  00 , tt , the plot has a law of 
probability distribution [3-5]: 

 
ae

n

na
n


!

 ,                      (1) 

 
where a – the mathematical expected number of 
points falling on the plot: 
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)(t  – flux density or intensity.. 
Poisson process is called stationary Poisson or 

just stream if   constt  ,  
At a constant flow rate 
 

 a=.                               (3) 
 
The distribution in the form of (1) obtained by 

the outstanding French mathematician of the last 
century, S.D. Poisson. 

In our case, state of the system are connected 
direct connection with one a sibling item. This 
scheme is a random process applies to a scheme of 
pure breeding, the process itself is a process of pure  
 

breeding. The set of states is system intransitive, 
unlocked, terminal, non-performing and non-
recurrent state, the end state of the system is 
absorbing. The interaction of particles with matter is 
also a Markov process, since all the probabilities in 
the future depend only on the condition of the 
process is at the moment and do not depend on the 
manner in which this process took place in the past. 
A Markov chain is a kind of Markov process, in 
which the future depends on the past through the 
present [3-5]. 

The process of ion interaction with matter, 
including solid, as described by a Markov chain as 
the conditional probability of each event during this 
test are uniquely determined by the result of the 
previous state. A Markov chain is completely 
described by specifying all the possible transition 
probabilities, which are written in the form of k-th 
order square matrix [3-6]. 

A Markov chain is a process with discrete state 
and discrete time, so to go on Markov processes 
with discrete states and continuous time Markov 
chains to ask ourselves a sufficiently small interval 
depths h, so small that none of Poisson flows 
acting on the system, almost could not in the depth 
interval h appear more than events [3,4]. Define 
for each pair of states (Si , Sj), between which a 
transition Si   Sj, transition probability 

)(),( khh ijij   , which corresponds to a 
penetration depth [3-6]. Suppose that at a certain 
depth h' at an angle γ to the chosen direction 
(relative to the perpendicular to the sample surface) 
generated particle (nucleon, electron, positron, 
primary line of an atom). We assume that after the 
collision, it does not change its direction, intensity 
does not depend on the flow of time, and 
consequently, the penetration depth, that is 

 
consth   )(                        (4) 

  
In the future, instead of all the time we consider 

the depth of penetration. Using the well-known 
equation of the Kolmogorov-Chapman for Markov 
processes, namely [5]:  

 
         


  ),(),(),( tspsptp niin ,            (5) 

where ts  , we obtain a recurrence relation for 
the transition probabilities: 
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But since the process is always continuous in the 

depth of penetration and a particle at some depth, 
instead of the amount we have the integral, which is 

taken over the entire depth of h' to h. Thus, we get 
the following relations:
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Or in a simpler form: 
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where  0,,'  hhn  - probability to experience n 
particle collisions, reaching a depth h - the 
probability of transition in n steps ;  cos0  ; 

 01 ,'','  hhn  - probability test particle (n-1) 
collision - transition probability for (n-1) step; 

 00 ,,''  hh  - the probability that the particle will 
reach a depth of h, without experiencing any impact 

- the probability of transition for step 1; 
0

''

dh  - the 

probability that the particle experiences collision at 
a depth h''.  

In (1) we obtain when n=0, the probability that 
the particle will reach a depth h, without suffering 
any collision: 
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Using recursive relation (10) we obtain the 
probability that the particle will reach a depth h,, 
experienced with one, two, n for the case of 
collision, and when   and   not changed after 
collision [1, 2, 7] 
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In our case, the Markov chain is not 

homogeneous, since the transition probabilities 
nkk  ... ,1 ,0   ,   change at each step the k, the flow 

rate does not depend on the depth of penetration, 
that is everything flows, S transform the system 
from one state to another, are the simplest stationary 
Poisson. This Markov chain has a stationary mode, 
because it does not has an ergodic property. The 
simplest CPF in the extreme case, at 






0

'hh , the 

transition to the Poisson distribution. 
Consider the case where after the collision of the 

particle does not change its direction of movement, 
the flow rate is time dependent, and consequently 
the penetration depth, i.e. [8]: 

 

  1
)'''(

11)(
00














khEa
h


 .           (13) 

 
But since the process is always continuous in the 

depth of penetration and a particle at some depth, 
instead of the amount we have the integral, which is 
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taken over the entire depth of h' to h. Thus, we get the following relations: 
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Or in a simpler form: 
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where h', h - the depth of the generation and 
registration of the incident ion, E0 - the initial ion 
energy,  0,,' Ehhn  - likely to experience n particle 
collisions, reaching depth h,  01 ,'',' Ehhn  - likely 

to experience particle n-1 collision, having a depth  
 

of h' to h'',  00 ,,'' Ehh  - the probability that the 
particle will reach a depth of h, without 
experiencing any collisions, 0, a, E0', k – 
approximation parameters.  

Where we have CPF expression in the form of 
ions [8]: 
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n - the number of interactions.  

The energy spectrum of primary ejected atoms is calculated by the formula [8]:  
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where n(h') – cascade-probability function in 
modified form; 1, 2 – runs on an ion - atomic and 
atom – atom collisions, respectively; k  – an integer 
greater than one; n0, n1 – initial and final value of 
the number of interactions in the domain of cascade-
probability functions,  hEEw ,, 21  - CPF range in 
the elementary act, E2 – the energy of the primary 
knock-on atom.  

Expression concentration of vacancy clusters 
under ion irradiation solid-state is given by [8]: 
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max2E – the maximum possible energy to atom. 

Formula (19) can also be written as an equation 
of the Kolmogorov-Chapman, the incident particle 
is an ion. It is obvious that the interaction of ions 
with solids, primary education ejected atoms is also 
described by a Markov chain.  
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In the expression for the spectrum of primary 
ejected atoms (19) under the integral contains the 

product of the probabilities.  
Here they are: 
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ik – the probability that it reaches a depth h' 

after (n-1) - th collision, provided that the previous 
event occurred, namely at a certain depth of the 
primary particle was generated - ion. 

2.   kmhEEw ',, 20  – the conditional 
probability that the initially-formed line of the atom 
with the energy Е2 of the ion with the energy Е after 
n-fold impact.  

3. ms
hh 
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 
 2

2
/'exp  – the conditional 

probability that PEA formed at a depth h  of n-fold 
ion interaction with the substance to reach the depth 
h.  

Spectrum PEA ),,( 20 hEEW  is likely that from 
the 1st to the energy 0E  of the ion formed a certain 
number of secondary particles with an energy 2E  at 
a depth h. 

In general, all the functions mskmik   , ,  are 
the probabilities for the transition of the Markov 
chain, respectively, from the i-th state to the k-th; of 
k-th in the m-th; of m- th to s-th. 

Then the Kolmogorov-Chapman equation can be 
written as follows: 
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Wij   – probability of transition from i -th state in 

about j-th.  
Since the the system state are continuous at 

depth, the expression (22) is converted to the 
following: 
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Markov chains are used in various areas of 

research. The chemistry of enzymatic activity, the 

Michaelis-Menten kinetics, may be viewed as a 
Markov chain, where at each time step, the reaction 
proceeds in a certain direction. While Michaelis-
Menten kinetics is quite simple, much more 
complex reaction networks can also be modeled 
using Markov chains [9]. In physics, the growth 
(and composition) copolymers can be modeled 
using Markov chains. Based on reactivity ratios of 
the monomers which constitute the growing 
polymer chain, the chain structure may be 
calculated. [10] Markov chains are used in finance 
and economics, to simulate various phenomena, 
including asset prices and the collapse of the market 
[11,12]. In our work shows the relationship of the 
interaction of particles with matter and radiation 
defect formation in solids irradiated by ions with 
Markov chains and Markov processes, ie, 
Recurrence relations for the cascade-probability 
functions, expressions for the spectra of primarily 
sputtered atoms and the concentration of radiation-
induced defects of Markov chains. Similarly, we can 
show the connection between the processes of 
radiation defect formation in solids irradiated by 
electrons, protons, alpha particles with Markov 
processes and Markov chains. 

Thus, the particle interaction process with a 
solid education and radiation defects in solids 
irradiated by charged particles can be described by 
Markov chains and Markov processes. Unlike 
others, our research are used in radiation physics of 
solids. You can also use Markov chains and Markov 
processes in space research. 

 
Conclusion 
 
Therefore, it is shown that the particle 

interaction with matter and the process of formation 
of radiation defects in solids irradiated with ions, is 
a Markov chain. In our case, the Markov chain is 
not homogeneous, since the transition probabilities 

nkk  ... ,1 ,0   ,   change at each step the k, the 
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intensity of the flow depends on the depth of 
penetration, that is everything flows, S transform the 
system from one state to the other, are non-
stationary Poisson. Conditional probabilities 

n ...,,, 3210  are transition probabilities for 
inhomogeneous Markov chains, has no steady state. 
The elementary cascade-probability function does 
not account for energy losses due to ionization and 
excitation directly in the process of generating a 
primary ejected atoms. This Markov chain has a 
stationary mode, because it does not has an ergodic 
property. 

The paper considers the relationship with 
Markov chains and Markov processes for models 
describing particle interactions with matter and the 
process of formation of radiation defects in the ion 
irradiation. In the future we plan to use a Markov 
chain for the cascade-probability functions for 
unstable particles, mu- mesons, pi- mesons, 
neutrons, positrons.  
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