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Abstract: The work deals with the modeling of turbulent energy using finite-difference and spectral 
methods. Simulation of the turbulent process is based on the filtered three-dimensional unsteady Navier-
Stokes equations, for the closure of the main equation the dynamic model is used. The mathematical 
model is solved numerically, the equation of motion is solved by a finite-difference method, the equation 
for pressure is solved by spectral method. Also new algorithm for the numerical solution of the Poisson 
equation for finding pressure is developed. In the results of simulation, the change of turbulent kinetic 
energy over the time, the integral length scale, the change of longitudinal-transverse correlation functions 
are obtained, and longitudinal and transverse one-dimensional spectra are defined. 
Key words: turbulent energy, finite-difference method, spectral method, Poisson equation, cyclic penta-
diagonal scheme. 

 
 
Introduction 
 
Despite of the large number of works devoted to 

the modeling of turbulent processes in various 
fields, modeling of complex transitional and 
turbulent motions using the tools and applications of 
modern computer technology, new algorithms and 
approaches of applied mathematics remains relevant 
direction for scientists involved in applied research. 
This is explained by the fact that turbulent flow, 
characterized by a pronounced nonstationarity and 
nonlinearity of the processes, the presence of large 
displacements environment diverse, complex 
interactions, and dissipation of energy can not be 
accurately described mathematically. The problem 
of turbulence is still not solved. A study of turbulent 
processes necessary in connection with large 
number of devices, where there is turbulent 
phenomena and natural processes, where also 
dominated the chaos. From the standpoint of 
modern fluid mechanics, turbulence is contained a 
very useful information for engineering practice. 

The main objective of the theory of turbulence - 
the study of the overall dynamics and the nature of 
turbulence, i.e. the study of the evolution of large-
scale structures and statistical representation of the 
turbulent motion over the time. 

In nature and technology, turbulent motion - is 
the most common form of the movement of liquids 

or gases. However, a quite universal and valid 
method for calculating turbulent flows does not 
exist. This is due to the complexity of the turbulent 
flow. Turbulence is caused by instability of laminar 
flow, and its character is determined by the 
geometry of the flow. Instability leads to the 
formation of wavy structures that can absorb energy 
from the main flow. As the wave is grown, the 
energy will be transferred to other forms of 
disturbances due to nonlinear effects, and cause 
disordered ripple, which is usually regarded as a 
manifestation of turbulence [1-4]. 

In this work, we make an attempt for solving 
this problem by using the large eddy simulation 
method. The idea is to impose in the phase space the 
initial condition for the field of velocities that 
satisfies the condition for continuity. Thus the main 
spectral equation can not be solved and a given 
initial condition phase space is translated into the 
physical space using a Fourier transform. The 
obtained field of velocities is used as the initial 
condition for the filtered Navier–Stokes equation. 
Then, the unsteady three dimensional Navier–Stokes 
equations are solved to simulate the degeneration of 
the isotropic turbulence. 

The isotropic medium in turbulence undergoes a 
very rapid homogeneous deformation; then, all the 
characteristic sizes and any averaged characteristics 
of turbulence are constant, but variable in time. In 
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order to determine turbulent characteristics, it is 
necessary to numerically model the time variation 
change in all the parameters and the degeneration of 
the isotropic turbulence at different Reynolds 
numbers.  

 
 

Formulation of the problem 
 
The numerical modeling of the problem is based 

on the solution of unsteady filtered Navier–Stokes 
equations with the continuity equation in the 
Cartesian coordinate system: 
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where iu  – are velocity components, p  – is the 
pressure, t – is the time, v – is the kinematic 

coefficient of viscosity, ji,  – is the sub grid tensor 
responsible for small scale structures to be 
simulated, i, j – 1, 2, 3. 

For modeling the sub grid tensor a viscosity 
model is used and it is represented as: 
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where   2

12 2 ijijST SSCv   – is the turbulence 
viscosity; CS – is the empirical coefficient; 
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1  – is the value of the tensor of 

deformation of velocities [5]. 
 
Boundary conditions are taken as periodic in all 

directions. The initial values for each component are 
assigned as functions dependent on wave numbers 
in the phase space: 
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spectrum. 

For this problem a variation parameter m and the 
wave number k0, which determine the type of 
turbulence, are chosen. In figure 1 for modeling 
decay of homogenous turbulence k0 = 10 and m = 8 
are taken. 

 

 
 

Figure 1 – Energy of the initial level of turbulence based on the 
fixed wave number k0 = 10 and power of spectrum m = 8 
 
Numerical method 
 
For solving the Navier–Stokes equation (1), we 

use a splitting scheme by physical parameters that 
consist of three stages. At the first stage, the 
Navier–Stokes equation is solved, without taking 
pressure into account. For approximation of the 
convective and diffusion terms of the equation a 
compact scheme of a fourth order of accuracy O(t3, 
h4) is used. The intermediate field of velocity is 
found by the fractional step method using the cyclic 



6

International Journal of Mathematics and Physics 7, №1, 4 (2016)

Modelling of the turbulent energy decay based on the finite-difference and spectral methods

penta-diagonal matrix method [5]. At the second 
stage the Poisson equation is solved, which is 
satisfies the continuity equation with considering the 
velocity field from the first stage. Obtained the 
pressure field is used at the third stage for the 
recallculate of the final velocity field [6]. 

To solve the three-dimensional Poisson equation 
the Fourier transform method, which consists of 
several steps is used. The resulting intermediate 
velocity field does not satisfy the continuity 
equation. The exact expression for the new velocity 
field is obtained by adding to the intermediate field 
the term corresponding to the pressure gradient: 
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Substituting the data in the continuity equation 

we get: 
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     (5) 

 
Carrying out the transformation, we obtain the 

Poisson equation for the pressure field: 
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The equation for pressure is approximated at the 

point i, j, k takes the following form: 
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Pressure ijkP  in the physical space goes into the next phase using next dysfunctional: 
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For the Poisson equation a boundary conditions 

are taken as periodic. For solving the Poisson 
equation we use spectral method in combination 

with Fourier transform. Substituting (9) and (10) 
expressions in equation (7) and performing 
transformation we get: 
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At the final stage the inverse Fourier transform 

is performed to obtain the solution of the Poisson 
equation.  

 
Numerical results 
 
As the result of modeling, the characteristics of 

the isotropic turbulence are defined. According to 
the semiempirical theory, the integral scale of 
turbulence grows with time. The calculation was 
performed in the area of  LB=2π at the grid size of  
128x128x128 in space, the time step is dt = 0.001, 
the kinematic viscosity is ν = (2π) u0 / 500, with the 
dimensionless parameter of Re = 500. Characteristic 
values of the speed, and time are taken equal: u0 = 1,  

0
0

1BLT
u

  .  

 

 
 

Figure 2 – The changing of integral turbulence scale,  
calculated at Re = 500,  

comparison of  LES and DNS 
 
 
In figure 2 results of changing of the integral 

scale of turbulence over the time, using 
dimensionless variables Re = 500 by simulation 
LES and DNS are compared. Figure 3 shows the 
results of the influence of the viscosity on the 

isotropic turbulence decay of the kinetic energy, 
calculated in Re = 500 and compared with data 
obtained by the LES.  From Figures 2 and 3 can be 
seen that the integral turbulence on the expiry of the 
time scale is increased, while the decay of kinetic 
energy by the time all is rapidly approaching to 
zero. Also comparing of results LES and DNS has 
shown that during settlements is not revealed any 
abnormalities.  

 
 

 
 

Figure 3 – The changing of turbulent kinetic  
energy over the time, calculated at Re = 500,  

comparison of LES and DNS 
 
 
The correlation coefficients express the average 

by the volume, a correlation ratio between velocity 
components at various points. Figure 4 and Figure 5 
shows the change of the longitudinal and transverse 
correlation function f(r, t) and g(r, t) by the time, 
calculated at Re = 500. We can see that with the 
growth of r values of functions tends to zero. 
Comparison of LES and DNS methods of 
calculation shows that don't occur any significant 
changes. The changing the longitudinal and 
transverse dimensional spectrum at different time 
points is possible to see in figures 6 and 7 
respectively. 
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Figure 4 – The changing of longitudinal correlation function  
f(r, t) by the time, calculated at Re = 500:  

1) t = 0.573; 2) t = 0.382; 3) t = 0.191; 4) t = 0 
 

 
 

Figure 5 – The changing of transverse correlation function  
g(r, t) over the time, calculated at Re = 500:  

1) t = 0.573; 2) t = 0.382; 3) t = 0.191; 4) t = 0 
 

 
 

Figure 6 – The changing of a longitudinal  
one-dimensional spectrum over the time, calculated  

at Re = 500 
 
 

 
 

Figure 7 - The changing of a transverse  
one-dimensional spectrum over the time, calculated  

at Re = 500 

 
 
Conclusion  
 
In this paper, the numerical simulation of the 

kinematic viscosity decay the influence on 
homogeneous isotropic turbulence based on the 
finite-difference method is considered, and the 
comparison results with spectral method is 
shown. The results of numerical modeling, 
obtained in this paper are fully consistent with 
results of the authors [7]. 

Thus, new algorithm for the numerical 
solution of the Poisson equation for finding 
pressure is developed. Based on the constructed 

model the large-scale numerical simulations of 
isotropic turbulence by LES are carried out and 
comparison with results of DNS is made. All 
physical processes and phenomena of 
homogeneous turbulence are detected in the 
course of numerical simulation.  
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