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Abstract. Nonlinear flexural-torsional vibrations of shallow drill-strings are investigated. The drill-string 
is represented as an elastic rod rotating at constant angular velocity under the action of the longitudinal 
compressive force. The nonlinear model of flexural and torsional vibrations of drill-string is constructed 
on the basis of the theory of finite deformations of V.V. Novozhilov and its second system of 
simplifications. The numerical analysis of the model is carried out in the environment of symbolic 
mathematical computations – Wolfram Mathematica. The dominance of flexural vibrations of the drill-
string over torsional vibrations is established. The influence of drill-string parameters on its oscillatory 
processes is investigated. It will allow to build up the modes of the drill-string movements to improve the 
quality of drilling of wells.  
Key words: drill-string, dynamics, torsional-flexural vibrations, finite deformations, nonlinear model.  

 
 
Introduction 
 
Nowadays intensive development of the Earth's 

interior is characterized by the growth of oil and 
natural gas production. Construction of vertical 
wells by drilling is the most widespread way of 
production of oil products in countries with 
developed mining industry. It is safe and effective in 
a variety of geological conditions. However, the 
practice of construction of oil and gas wells shows 
that there are cases when there is a curvature of the 
vertical wellbore, which jeopardizes the possibility 
of its use. The appearance of emergency situations 
caused by critical states of quasi-static equilibrium 
and vibrations of the drill-string can serve as the 
reasons of wells deviation, as well as the bracking of 
a well due to the rotation of the drill-string, which 
generates as a result the centrifugal and Coriolis 
forces of inertia. To resolve these problems with the 
wells it is necessary to increase the efficiency of 
their drilling avoiding the buckling movements of 
the drill-string. Therefore, modelling of the drill-
string dynamics and identification of safe modes of 
wells drilling represent a significant scientific and 
practical interest.  

The study of the flexural-torsional vibrations as 
typical type of deformation of compressed and 
twisted drill-strings is one of the problems of the 
drilling equipment dynamics. Flexural-torsional 
vibrations were studied in linear statement in the 

majority of works on dynamics of elastic rod 
elements. For example in [1, 2] the linear theory of 
propagation of flexural-torsional vibrations in thin 
elastic beam of arbitrary section is considered. In [3] 
flexural-torsional vibrations of continuous beams 
and frames with distributed parameters were studied 
in linear statement [4] studies curving of the rod 
with a linear function of the curvature of all varieties 
of bending. S.P. Timoshenko [5, 6] obtained the 
linear equation of flexural-torsional vibrations of 
straight nontwisted rods with asymmetrical cross-
section. In [7, 8] linear equations of flexural, 
flexural-torsional, flexural-longitudinal vibrations of 
twisted rotating rods taking into account the cross-
sectional warping shear and torsion were obtained.  

Often there are not enough classical linear 
theories and it is necessary to consider theories of 
higher approximations, in particular, considering 
geometrical and physical nonlinearity. And only a 
few papers devoted to the problems of torsion of 
rods in the nonlinear formulation. Thus, in [9] the 
nonlinear flexural–flexural-torsional vibrations of 
twisted rods, described by a system of three 
nonlinear integral-differential equations in partial 
derivatives, were investigated. The equation takes 
into account warping of the cross-section of the rod. 
However, the sampling system of vibrations are 
presented in a series of its own forms of the linear 
problem. In [10] in the framework of geometrically 
nonlinear model of elastic rod the interactions of 
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flexural and torsional waves, resulting in the 
formation of periodic and solitary stationary waves, 
were studied, but only one-dimensional transverse 
vibrations were considered. Also, nonlinear models 
of flexural-torsional vibrations of an elastic rod were 
considered in [11, 12].  

The problem of vibrations occurring in 
compressed and twisted rods with no restrictions on 
the size of their deformations is poorly studied, so 
this fact makes this problem actual and represents a 
scientific and practical interest to the oil and gas 
industry.  

In this regard, this paper investigates the 
flexural-torsional vibrations of shallow drill-strings 
with no restrictions on the sizes of deformations. 
The nonlinear theory of finite deformations of V. V. 
Novozhilov [13] was used to derive the equations of 
drill-string movement.  

 

Problem Statement 
 
The drill-string is considered as an isotropic rod 

of length l, having a circular cross-section. With 
such cross-sectional shapes their warping can be 
ignored even when the twist angles are finite [14]. 
The rod rotates with angular velocity and 
compressed by the longitudinal force N(z,t). The 
system of equations, describing the interaction of 
flexural and torsional vibrations of a rod considering 
geometrical nonlinearity, was obtained on the basis 
of second system of simplifications of the nonlinear 
theory of finite deformations of V.V. Novozhilov 
[15]. According to the last, components of 
deformations and angles of rotation also rely of 
small sizes, but the angles of rotation of the second 
order are not neglected. The resulting system of 
equations has the form: 
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with the following boundary conditions: 
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and the initial conditions: 
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Here u(z,t) is transverse movement of particles 

of the median line of the rod in the Oxz plane;
),( tzv  is transverse movement of particles of the 

median line of the rod in the Oyz plane; ),( tz is 
the angle of rotation of the cross-section; 1C , 2C  are 
constants;  is the angular velocity of rotation; 

( , )N z t is the longitudinal compressive force; E  is 
Young's modulus;   is Poisson's ratio; F is the 
cross-sectional area of the rod; 2

y
F
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axial moment of inertia; 2 2( y )p
F
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polar moment of inertia; 4 4( y )r
F

I x dF  ; l  is 

the rod length.  
 
Numerical Solution of Boundary Value 

Problem 
 
The Bubnov-Galerkin method was used to 

determine the solution of (1)-(5). In [16] has been 
shown that this method allows to successfully 
analyze the behavior of drill-strings used for oil 
production in the vertical and deviated wells. In 
contrast to [17], a multimode approximation of the 
solution is considered here. It is assumed that a 
compressive load is constant and distributed along 
the length of rod,  ,N z t N .  

In accordance with the Bubnov-Galerkin 
method, components of transverse movement 

( , )u z t , ( , )v z t and angle of rotation of the rod 
cross-section ),( tz   are presented in the form of 
series: 
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are chosen so that 

they satisfy the boundary conditions (4). After 
substitution of the series (6) – (8) in equation (1) – 
(3) the nonlinear system of differential equations of 
the second order with respect to the unknown 
functions      , ,i i if t h t g t is obtained. 
Moreover, it can be shown that the flexural-torsional 
vibrations will not appear on the even modes, so it 
makes sense to immediately present the components 
of movements and rotation angles of the cross-
sections of elastic line of the drill-string by the 
method of Bubnov-Galerkin in the following form: 
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This approach allows to carry out a complete 
analysis of flexural and torsional vibrations of drill-
strings without expenses of machine time for 
calculation of not arising harmonics, especially 
when a large number of modes is considered.  

The implementation of the Bubnov-Galerkin 
method and the further numerical solution were 
made in the applied program for symbolic 
computation – Wolfram Mathematica 10. 2.  

The stiffness switching method was applied to 
implement the numerical solution of the equations. 
This method includes two numerical methods: 

1) eighth-order explicit Runge-Kutta method, 
2) linear implicit Euler method.  
Use of two numerical methods is caused by 

stiffness of the studied equations. The stiff equations 
(system of the equations) are understood as such 
tasks, where explicit methods do not work [18], i. e. 
using of explicit scheme at specified time 
integration steps leads to a sharp increase in the 
number of calculations, either a rapid increase of an 
error.  

Thus, tasks can be stiff in one intervals and non-
stiff in others [19]. While there is no stiffness in the 
system and numerical solution goes smoothly, the  
 

eighth-order explicit Runge-Kutta method is 
applied. As soon as the system becomes stiff, the 
implicit method of Euler automatically starts being 
used for the numerical solution.  

This stiffness switching method is applied not 
only for the reason that investigated ODEs are stiff, 
but also in view of its high efficiency in comparison 
with other numerical methods [20].  

 
Numerical Results 
 
Numerical calculations of the model were 

carried out at the following values of parameters of 
the steel drill-string: 52.1 10E MPa  , 

37800 /kg m  , 0.28  , outer diameter of the 
rod 0.2 ,D m inner diameter 0.12d m , 

2 22.01 10 ,F m  5 46.84 10 ,yI m  500l m , 

5rad min  , 32.2 10 N.N    
Considering the first four approximations of 

solution by the Bubnov-Galerkin method, 
amplitudes of flexural and torsional vibrations of 
middle section of drill-string (Figures 1-2) are 
determined.

  

 
 

Figure 1 – Flexural vibrations  
of the drill-string by the first four harmonics 

 
Figure 2 – Torsional vibrations  

of the drill-string by the first four harmonics 
 
 
It can be seen from the analysis of results that 

flexural vibrations considerably surpass torsional 
vibrations. In this case, considering the type of 
initial and boundary conditions, torsional vibrations 
occur, appearing together with flexural vibrations. 
But the order is not so large. Nevertheless, influence 
of parameters of the drill-string on its flexural and 
torsional vibrations was studied. As these 

parameters were considered: length of the drill-
string (Figures 3-5), rotational speed of the drill-
string (Figures 6-8), radius and the thickness of its 
cross-section (Figures 9-11).  

It is established that amplitudes of transverse 
vibrations with reduction of the length of drill-string 
are decreased, while amplitudes of torsional 
vibrations are increased. The calculations were 
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carried out with the drill-string lengths: l = 250 m, 
 l = 500 m (Figures 3-5). Figures 6-8 show the effect 
of rotational speed of the drill-string  on the 
flexural-torsional vibrations. For this purpose the 
length of the drill string is considered 200l  m, 
rotating with an angular velocity 1) ω = 15 rad/min, 
2) ω = 30 rad/mid. Increasing the angular velocity 

from 15  rad/min to 30  rad/min doesn't 
involve increase of amplitude of transverse 
vibration, but, nevertheless, increases the frequency 
characteristic of oscillatory process. In the case of 
torsional vibrations decreasing of amplitude is 
observed, which indicates the stabilization of the 
drill-string dynamics. 

  
 

 
Figure 3 – Flexural vibrations ( , )u z t  

of different length drill-strings, z = 0.5l 

 
Figure 4 – Flexural vibrations ( , )v z t  
of different length drill-strings, z = 0.5l  

 
 

 

 
Figure 5 – Torsional vibrations ( , )z t  

of different length drill-strings,  
z = 0.5l  

 
Figure 6 – Flexural vibrations ( , )u z t  

of drill-strings (l = 200 m)  
at different angular speeds 
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Figure 7 – Flexural vibrations ( , )v z t  

of drill-strings (l = 200 m) at different angular speeds 

 
Figure 8 – Torsional vibrations ( , )z t  

of drill-strings (l = 200 m) at different angular speeds 
 
 

 
 

Figure 9 – Flexural vibrations ( , )u z t   
of drill-strings with different external diameter 

l = 300 m and 5  rad/min 

 
Figure 10 – Flexural vibrations ( , )v z t  

of drill-strings with different external diameter,  
l = 300 m  and 5  rad/min 

 

 
Figure 11 – Torsional vibrations ( , )z t  

of drill-strings with different external diameter,  
l = 300 m and 5  rad/min 
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Influence of thickness of walls of the drill-sting 
on its flexural and torsional vibrations is 
investigated. Cases when sizes of external diameter 
of columns had the following values are considered: 
D = 0.168 m and D = 0.14 m.  

It is established that reduction of external diame- 
ter of the drill-string from D = 0.2 m to D = 0.168 m 
(Figures 9-11), and, therefore, the thickness of the 
column, leads only to insignificant increase in 
amplitude of flexural and torsional vibrations. 
Reduction of external diameter to D = 0.14 m 
causes stronger indignation of vibrations.  

 
Conclusion 
 
In this paper the spatial movement of 

compressed and twisted drill-strings with no 
restrictions on the size of their deformations was 
modelled. The model is based on application of the 
Ostrogradsky-Hamilton variation principle and the 
theory of finite deformations of V. V. Novozhilov. 
The numerical analysis of nonlinear mathematical 
model of flexural-torsional vibrations of the drill-
string for a spatial case was carried out. The 
calculation procedure of the mathematical model 
was developed and implemented in the environment 
of Wolfram Mathematica 10. 2. This procedure 
based on applying the Bubnov-Galerkin method for 
converting the original system of nonlinear 
equations with distributed parameters in a system of 
nonlinear ordinary differential equations and using a 
numerical stiffness switching method.  

Results of researches testify that during the 
process of drilling a well in the drill-string can occur 
coupled flexural-torsional vibrations. Moreover, 
torsional vibrations is much less than flexural 
vibrations. Influence of parameters of the drill-string 
on its flexural and torsional vibrations is established. 
Increasing of the drill-string's length leads to an 
increase of the amplitude of flexural vibrations, 
while the amplitude of torsional vibrations decrease. 
Increasing the speed of rotation of the drill-string 
entails an increase of the frequency characteristics 
of the oscillatory process and reducing of the 
amplitude of torsional vibrations that testifies to 
stabilization of the drill-string movement. Reducing 
of the outer diameter of the drill-string, and 
accordingly, the thickness of its walls significantly 
influences only on the amplitude of torsional 
vibrations. However, their order is much less than 
values of the amplitude of flexural vibrations, which 
will allow to neglect this fact and to save the costs 

by manufacturing of drill-strings with smaller 
external diameter.  
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