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Modelling of Coupled Nonlinear Axial and Lateral Vibrations of Drill Strings 
 

Abstract. In this work a nonlinear mathematical model of coupled axial and lateral vibrations of a drill 
string under the effect of a longitudinal compressing force is investigated. The drill string is modelled in 
the form of a rotating elastic rod. To solve the model the Bubnov-Galerkin method and numerical 
stiffness switching method are applied. It is shown that the coupled axial and lateral vibrations of the drill 
string only arise at odd frequencies in Bubnov-Galerkin's expansion. Numerical analysis of the influence 
of the drill string geometrical and frequency characteristics on its vibrations is carried out, and the 
corresponding recommendations are provided. 
Key words: drill string, nonlinear model, axial and lateral vibrations, rod, the Bubnov-Galerkin method, 
stiffness switching method. 

 
 

Introduction 
 
The oil and gas industry is the leading industry 

in Kazakhstan and has a huge role to play in 
national economy. Since the first oil production 
from the Karashungul field in 1899 and so far the oil 
and gas industry of Kazakhstan has undergone a 
rapid expansion and needed continuous 
improvement of drilling rigs. 

One of the main elements of the drilling rig is a 
drill string which may be subject to various types of 
vibrations in the process of the borehole drilling. It 
connects a bit in the bottom hole and drilling 
equipment located on the surface. 

Mathematical modelling of drill string motion is 
highly nonlinear and fairly complicated due to the 
drillstring dynamics involving axial, lateral and 
torsional modes of vibrations [1].Amongst them, the 
high-amplitude axial and lateral vibrations 
determined by the mode of drill string motion not 
only lead to the additional destruction of rocks and 
borehole walls and, thereby, to decrease in 
efficiency of drilling, but also increase risks of 
drilling equipment wear [2]. 

Nonlinear dynamic models of coupled axial and 
lateral vibrations of rotating drill strings taking into 
account external influences and contact with the 
borehole wall were studied by A.P. Christoforou 
and A.S. Yigit [3-4]. Nonlinear mathematical model 
of a drill string including the effects of bending and 
torsion and also interactions between the drill string 
and the well was considered by Melakhessou H. et 

al. [5]. However, in the works mentioned the 
authors only studied the behaviour of the lower part 
of the drill string (the bottom hole assembly). 

This work aims at studying coupled nonlinear 
axial and lateral vibrations of the whole drill string, 
presented in the form of a rotating elastic rod. 
Numerical analysis of vibrations and their 
visualization are conducted. 

 
Nonlinear Mathematical Model 
 
Modelling of drill string vibrations becomes 

much more difficult in the case when the string 
deformations are assumed to be finite and it is 
necessary to consider geometrical nonlinearity in the 
model. 

To create the mathematical model of drill string 
vibrations taking into account geometrical 
nonlinearity the potential of elastic strain 
constructed on the basis of the V. V. Novozhilov 
theory of finite strains [6] is used. As a design 
scheme of the drill string an elastic isotropic rod 
with pinned ends is accepted. Likewise, the 
hypothesis of plane sections is applied. 

According to the theory of finite strains, the 
components of the strain tensor ij  nonlinearly 
depend on the displacement components 
 , , , ,U x y z t    , , , , , , ,V x y z t W x y z t  over the x-, 

y- and z-axes, respectively, and enable one to 
determine completely the rod deformation in any 
point of the rod. 
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The elastic potential   is expressed in terms of 
the components of the stress tensor σij and the strain 
tensor εij as follows: 

1
2 ij ij   .                        (1) 

Using the physical equations of the generalized 
Hooke's law for an isotropic body in the case of 
spatial strain [7], we obtain the following expression 
for the elastic potential in strains: 

 

     2 2 2 2 2 221 2
1 2 1 2xx yy zz xx yy yy zz zz xx xy yz zxG             

 
   

                
,       (2) 

 

where
 2 1

EG





is the shear modulus, E is 

Young’s modulus,  is Poisson’s ratio. 
Elastic potential (2) is represented further in 

terms of the elongations , ,xx yy zze e e , shears 

zxyzxy eee ,, and angles of rotation zyx  ,,
relative to the corresponding coordinate axes, and 
the V.V. Novozhilov second system of 
simplifications is accepted [6]. 

Let us introduce two coordinate systems: a 
global (fixed) system Oxyz and a local one Ox y z    
which allows to consider rotation of the drill string. 
The Oz  and Oz axes are directed along the axis of 
the rod, rotation is anticlockwise. 

The case when vibrations take place in the 
Oyz-plane is considered. Taking into account the 
longitudinal displacement of the rod cross-section 
along the z-axis and its bending along the y-axis, 
components of displacements are given by 

 

 

( , , , ) ( , ),

( , )( , , , ) , .

V x y z t v z t

v z tW x y z t w z t y
z



 

 
       

(3) 

 
Transition from the global coordinate system to 

the local one is made by using the ratios given in 
[8]. 

To derive the mathematical model the variation 
Hamilton principle is applied, according to that 

 
2

1

0( ) 0,
t

t
J T U dt     

             

(4) 

where 0U  is the potential energy of rod 
deformation, T  is the kinetic energy,   is the 
potential of external forces. 

The potential energy of rod deformation is 
defined by the potential of elastic strain, and after 
some transformations takes the form: 

  22 2 42

0 2
0 0

1 1
1 2 1 2 2

l l

x
G w v GF w v vU F I dz dz

z z z zz

 

                                            
  ,              (5) 

 
where l is the rod length, F is the cross-section area 
of the rod. 

The expression for kinetic energy of the rod 
taking into consideration the energy of its nominal 
rotary motion is written as 

 

 
22 2 2

2 2 2

0

1
2

l

x x y
v w vT F v I I I dz
t t z t

  
                                  
 ,                     (6) 

 
where   is density of the material, ,x yI I are axial 
inertia moments of the rod cross-section,  is the 
angular speed of rod rotation. 

The potential of external forces  allowing for 
the effect of the longitudinal compressing force 
 ,N z t on the drill string is determined as follows:
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(7) 

 
Substituting expressions (5)-(7) into (4) and 

calculating the variation J  of the action integral, 
the following nonlinear equations of the coupled 

axial and lateral vibrations of the drill string loaded 
by the axial force  ,N z t  are obtained: 
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 (8) 

 
with the boundary conditions of the form 

2

2
( , )( , ) 0, 0 ( 0, ),

( , ) 0 ( 0, ).

x
v z tv z t EI z z l
z

w z tEF z z l
z


   




  


                                     (9) 

 
Mathematical model (8)-(9) generalizes the 

known model [9], describing nonlinear vibrations of 
an elastic rod without rotation and axial 
compression. 

 
The Bubnov-Galerkin Method 
 
To obtain the solution of model (8)-(9), we 

apply the Bubnov-Galerkin method that allows to 
successfully analyze the behaviour of drill strings 
applied to oil production in vertical and deviated 
holes [10]. 

Unlike [11], here multimode approximation of 
the solution is considered. The compressing load is 
supposed to be constant and distributed along the 
rod length,  ,N z t N .  

Then, according to the Bubnov-Galerkin 
method, the lateral displacement ( , )v z t  in the Oyz-
plane and the longitudinal one  ,w z t along the z-
axis can be expanded into the following series: 

   
1

, sin ,
n

i
i

i zv z t f t
l




   
 


             

(10) 

   
1

, cos
n

i
i

i zw z t g t
l




   
 

 .              (11) 

 

Basis functions sin i z
l
 

 
 

 and cos i z
l
 

 
 

 were 

chosen so that they met boundary conditions (9). 
Realization of the Bubnov-Galerkin method and 

the further numerical solution are conducted in the 
Wolfram Mathematica 10.0 symbolic mathematical 
computation program. 

To begin with, coupled axial and lateral 
vibrations of the rod on the main frequency are 
considered. Substituting functions of displacements 
(10)-(11) at 1n   in equations of motion (8) and 
requiring, according to the Bubnov-Galerkin 
method, that the orthogonality condition on the basis 
functions be satisfied, the following nonlinear 
system of second order ordinary differential 
equations relative to new functions    1 1,f t g t is 
obtained:

 

         

     

3
1 1 2 1 3 1 1 4 1

2
1 1 2 1 3 1

0,

0.

a f t a f t a f t g t a f t

b g t b g t b f t

    

                                            

(12) 
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with the coefficients 
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2
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2
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2
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The solution of system of equations (12) is 

found numerically. For this purpose the stiffness 
switching method, involving an eighth order explicit 
Runge-Kutta method and a linearly implicit Euler 
method, is utilized.  

Use of two numerical methods is caused by the 
fact that the studied equations are stiff. The stiffness 
switching method, in turn, is highly efficient 
compared to other numerical methods while solving 
stiff problems [12]. 

For numerical computations the following 
values of the steel drill string parameters are used: 

52.1 10E MPa  , 37800 /kg m  , 0.28  , outer 

diameter of the drill string 0.2D m , inner diameter 
0.12d m , 2 22.01 10 ,F m  5 46.84 10 ,xI m   

500l m , 0.083rad s  , 32.2 10 .N Н   
In figures 1-2 lateral and axial vibrations of the 

drill string with the functions of displacements 
 ,v z t and  ,w z t , taken in the first approximation 

by the Bubnov-Galerkin method, at the given 
parameters of the mechanical system are shown. As 
can be seen from the following graphs, amplitude of 
the lateral vibrations is a few orders of magnitude 
greater than the one of the axial vibrations. 

 
 

 

 
Figure 1 – Lateral vibrations  

of the drill string on the main frequency 

 
Figure 2 – Axial vibrations  

of the drill string on the main frequency 
 
 

Also the cases of three-mode and five-mode 
approximations for the functions  ,v z t and  ,w z t

by series (10), (11), i.e. at 3n   (Figs. 3-4) and 
5n   (Figs. 5-6), are considered. 
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  1f t   2f t   3f t    1g t   2g t                    1g t  
 

Figure 3 – Lateral vibrations  
of the drill string on the first three frequencies 

 
Figure 4 – Axial vibrations  

of the drill string on the first three frequencies 
 
 
 

 

  1f t   2f t   3f t  

   4f t    5f t  

  1g t   2g t   1g t  

   4g t    5g t  
 

Figure 5 – Lateral vibrations  
of the drill string on the first five frequencies 

 
Figure 6 – Axial vibrations  

of the drill string on the first five frequencies 
 
 

As clearly demonstrated in figures 3-4, taking 
into account more vibration modes allows to 
describe more precisely the oscillatory process of 
the drill string. However, it worth noting that both 
the lateral and axial vibrations take place only on the 
first and third frequencies whilst there are no 
vibrations on the second frequency. 

Figures 5-6 show that the lateral and axial 
vibrations of the drill string arise only on the first, 
third and fifth frequencies for the case of 5n  . On 
the second and fourth frequencies oscillatory 
process is not observed. 

It follows from the above that when studying 
coupled nonlinear axial and lateral vibrations of the 
drill string, the contribution to the oscillatory 

process is only made by odd modes, whereas 
vibrations on even frequencies do not appear. 

Thus, the displacement functions  ,v z t  and 

 ,w z t by the Bubnov-Galerkin method can be 
presented in the following form: 

 

     
1

2 1
, sin ,

n

i
i

i z
v z t f t

l

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  
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These representations of the solutions will give 
the opportunity to carry out the full analysis of axial 
and lateral vibrations of the drill string without 
additional expenses of machine time for calculation 
of missing harmonics. 

 
Numerical Results and Discussions 
 
Successful performing the drilling operations in 

many respects depends on a right choice of 
parameters influencing the motion of a drill string. 
Such parameters are length of the drill string, its 
radius and thickness of walls, rigidity, angular speed 
of rotation, axial compressing loading, etc. 

To estimate the influence these parameters have 
on the axial and lateral displacements of the drill 
string cross-section points, nonlinear model (8)-(9) 
with the functions of displacements ( , )v z t and 

( , )w z t  in the second approximations, determined 
from (13)-(14), is considered. 

To begin with, we study coupled axial and 
lateral vibrations of the drill string, modelled in the 
form of the rotating isotropic rod of symmetric 
cross-section, at various values of the drill string 
length, namely at 250l m  and 500l m . The other 
parameters are left unchanged. 

The rod cross-sections near its center 0.49z l
and at the end 0.9z l are considered. 

As can be seen from figures 7-8, the lateral 
vibrations with increase in length of the rod rise in 
approximately three times regardless of the cross-
section considered. The maximum amplitudes of the 
vibrations are observed in the central cross-section 
of the rod, and become much smaller at its end, 
acquiring the stick-slip nature. 

 
 

  
                          250l m                   500l m                         250l m           500l m  

 
Figure 7 – Lateral vibrations  

of the drill strings of various lengths in 2nd 
approximation, 0.49z l  

 
Figure 8 – Lateral vibrations  

of the drill strings of various lengths in 2nd 
approximation, 0.9z l  

 
 
The axial vibrations of the rod, arising due to 

the effect of the longitudinal compressing load, also 
rise while increasing its length (Figs. 9-10). 

However, in this case the greatest vibrations appear 
at the ends of the rod, in a neighborhood of its 
center the axial deformations are negligible. 
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                        250l m                  500l m                         250l m           500l m  

 
Figure 9 – Axial vibrations  

of the drill strings of various lengths in the second 
approximation, 0.49z l  

 
Figure 10 – Axial vibrations  

of the drill strings of various lengths in the second 
approximation, 0.9z l  

 
 

Also, the influence of the drill string angular 
speed of rotation on the arising axial and lateral 
vibrations is studied. The rod of length 200l m  
with the values of the angular speed 0.25 rad s   
and 0.5rad s  is in consideration. 

Figures 11-12 show that increase in the angular 
speed of rotation of the rod leads to rise of 
amplitude of its lateral and axial vibrations as well. 

Meanwhile, double increase in the angular speed 
causes double increase in the amplitude of the 
lateral vibrations (Fig. 11), whereas change of this 
characteristic from 0.25 rad s to 0.5rad s results in 
more than 4 times rise of the amplitude of the axial 
ones (Fig. 12). Hence, change of the rod angular 
speed of rotation has a greater influence on its axial 
vibrations.

 
 

 

  

                0.25 rad s                   0.5rad s                  0.25 rad s           0.5rad s   
 

Figure 11 – Lateral vibrations  
of the drill string of length 200l m   

at different values of the angular speed of rotation  

 
Figure 12 – Axial vibrations  

of the drill string of length 200l m  
 at different values of the angular speed of rotation 

 
 

The drill strings with an external diameter 
0.2D m and internal diameter 0.12d m have been 

considered previously. Now it is investigated how 
much coupled axial and lateral vibrations of the 

strings will change with reduction in their external 
diameter. 

It is known that the thicker walls of a drill string, 
the more durable it is and more reliable drilling of a 
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borehole may be provided. However, if the 
vibrations with decrease in the thickness of the drill 
string walls are still within the range when the 
drilling process is carried out without the threat of 
borehole failure or breakage of the drill string, it 

may promote considerable economy of the material 
used in manufacture of drill strings. 

For comparison the drill strings with external 
diameters 0.168D m  and 0.14D m  are 
considered. 

 
 

 

  
 0.2D m  0.168D m            0.14D m   0.2D m  0.168D m           0.14D m  

 
Figure 13 – Effect of the drill string walls 

 thickness on its lateral vibrations at 
300 , 0.083l m rad s   

 
Figure 14 – Effect of the drill string walls  

thickness on its axial vibrations at
300 , 0.083l m rad s   

 
 

As can be seen from figures 13-14, decrease in 
the external diameter of the drill string from 0.2 m 
to 0.168 m and, consequently, the 0.016 m decrease 
in the thickness of the string walls only results in a 
minor increase in the amplitude of the axial and 
lateral vibrations. 

Further decrease in the external diameter to 0.14 
m causes stronger perturbation of vibrations which, 
however, is not critical. Thus, we might reduce the 
amount of material needed for production of the 
drill string, retaining at the same time stability of the 
system. 

 
Conclusion 
 
In this work a nonlinear mathematical model of 

drill string motion, presented in the form of an 
elastic rod, by introduction of the potential of elastic 
strain and application of the Hamilton principle was 
obtained. On the basis of this model numerical 
analysis of coupled axial and lateral vibrations of 
the rod under the effect of a constant longitudinal 
compressing load was carried out. The governing 
nonlinear system of partial differential equations by 
means of application of the Bubnov-Galerkin 
method was reduced to a system of ordinary 

differential equations which was solved by the 
numerical stiffness switching method. It was 
established that the contribution to the oscillatory 
process is only made by odd modes of vibrations. It 
was shown that maximum amplitudes of the lateral 
vibrations corresponded to the displacement of the 
central cross-section of the rod, whereas the greatest 
perturbation of the axial vibrations was observed at 
the rod ends. Results of the computations at the 
change of thickness of the drill string walls 
demonstrated that the steady nature of vibrations 
retains and gives the opportunity to considerably 
save the expendable material on the manufacture of 
drill strings. 

Due to the analysis of the drill string axial and 
lateral vibrations, arising during the drilling of oil 
and gas wells, it is possible to reduce significantly 
the emergence of the undesirable phenomena 
described in this work and to provide steady and 
reliable drilling. 
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