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Research and simulation of plastic zone around the Griffith’s crack 

 
 

Abstract. In this paper, by using the structural strength criterion of Neuber – Novozhilov, a formula of 
the critical load for plane blunt and sharp cracks is obtained. According to the obtained formula modeling 
of sharp crack as a thin ellipse with a ratio of small and major semi axes one to ten is carried out. With 
application of a software package OpenFOAM, based on the finite volume methods, by creating a solver 
for small elastoplastic deformation, we found the shape and size of plastic zone around the blunt and 
sharp cracks. A size of plastic zone based on calculation results satisfactorily agrees with the 
experimental data in researches of Hahn and Rosenfield, and shape – with data of Tuba. The results allow 
evaluating the impact of the microstructure to ductile material and on the behavior of structures made 
from such materials. 
Key words: Griffith’s crack, plastic zone, stress concentration, elastoplastic deformation, finite volume 
method, OpenFOAM. 

 
 
Introduction 
 
In the development of technological processes 

of manufacturing and design elements with the 
specified functional properties of the material it is 
necessary to ensure the appropriate structure, which 
determines its mechanical and physical properties. 
In the structural mechanics of fundamental role is 
simulation of the interaction of various scales in the 
process of deformation and failure to improve the 
operational properties of product (durability, 
strength, fracture toughness) [1].  

Influence of microdefects on the physical and 
mechanical properties of the material is studied by 
Irwin theory of strength, in which the defect is 
modeled by mathematical cut with ability to spread. 
In this case, there are singular points at the ends of 
the cut where stress tends to infinity by the 
asymptotic law. In Griffith's fracture mechanics 
study of the influence of defects on the properties of 
materials comes to a boundary value problem in 
plane deformation of a body having elliptical shape 
cutout. 

 
The criteria for the crack form 
 
For consideration of a defect in the form of an 

elliptical cutout it is necessary to determine the 
criteria for the limit of the ratio of the semiaxes of 

the ellipse. For this we consider a square plate with 
an elliptical defect in a generalized state of stress 
with the full tension. The symbols and loading 
scheme are shown in figure 1. Where L is a 
characteristic size of a square plate, a and b the 
lengths of the axes of the ellipse (a>b), and when 
L/a → ∞ we arrive at the problem of the full tensile 
plane with an elliptic hole. Stress tensor 
components, σyy, along the x-axis can be written in 
the form [1]: 

 
Figure 1 – The symbols and loading scheme of 

comprehensive stretching of the plate 
 
 

    2/3222222 2  baxbaxpxyy ,     (1) 
 

where p> 0 is tensile force. We introduce the 
notations: a = l; b = ml; 0 ≤ m ≤ l. 

We substitute the solution (1) into the structural 
strength criterion of Neuber–Novozhilov [2, 3, 4, 5]: 
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where σys is  tensile strength of the material in 
tension (yield surface), d is the structural parameter 
of destruction having the dimension of length. After 
integration, we find the critical load, expressed in 
terms of m:  
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Equation (3) holds for blunt and sharp fractures 

[2]. According to this formula figure 2 shows the 
dependence of the critical stress on the crack length 
through the dimensionless variable η=l/(l+d), for 
different values of ellipse axes relations in the range 
0 ≤ m ≤ 1.  

If case of m = 0 we get the formula of the 
authors from [5] as: 
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that derived for a uniaxial tensile elastic plate with 
straight crack length 2l (the same paper provides a 
comparison with experimental data).From (3) and 
(4) we obtain that the expression for the critical 
loads for small values of m is similar to cases for 
comprehensive and uniaxial tension. 

Figure 2 shows that the critical loads for the case 
m = 0 and m = 0.1 have a little different. Therefore, 
the numerical analysis of elastic-plastic flows 
around the elliptical shape of the defect was 
performed for the case of m = 0.1. 

 
 

                    
 

Figure 2 – Dependence of the critical loads on the crack length for different values  
of the ratio of the semiaxes of the ellipse 

 
 
Plastic zone simulation  
 
We consider a square plate with an elliptical 

defect (a = 10b) in a unilateral stretch. The symbols 
and loading scheme are shown in figure 3. 

Numerical analysis was conducted using the 
open source software package Open FOAM [6], by 
creating solver to small elastoplastic strains, using 
the Mises conditions in case of perfect plasticity.The 
increment of the plastic deformation tensor, dεp, 
depends on the stress: in lower limit only elastic 
deformations take place, dεp = 0; if achieve the limit 
value plastic deformations appear, the value of dεp 
calculates from stress. 

 

 
Figure 3 – Unilateral stretching of the plate.  

The symbols and loading scheme 
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The calculation results are presented in figure 4, 
which shows the curves for the dependence of the 
size of the zone of plasticity, rp, for the plane strain 
and the plane stress.In the case of plane strain 

calculations were performed for different values of 
Poisson's ratio (0.1 ≤ ν ≤ 0.5) for comparison with 
experimental data of plasticity zones from works [7, 
8, 9]. 

 
 

 
 

Figure 4 – Measured and calculated sizes of plasticity zone:  
a – plain strain, the most distant point of the boundary zone of plasticity for different values  

of Poisson's ratio compared with the experimental data [7,9];  
b – plain stress, plastic zone size along the x axis, curves 1 and 2 – by the Dugdale and Irwin formula [7, 8],  

3 – numerical calculation 
 
 
Researches of forms of plasticity zones made by 

Tuba, Rice and Rosengren, Hahn and Rosenfield are 
given in [7,8,9].By Tuba, the most distant point of 
the boundary zone of plasticity is at angle of 69°, as 
shown in figure 5 for different values of σ/σys. 

An important aspect is the experimental 
verification of the results of analytical calculations. 
Hahn and Rosenfield, from experimental research 
on the allocate region of plastic flow, came to the 
conclusion that none of the theoretical constructs are 
not fairly accurately describes a form of 
plasticity.Theoretical methods quite accurately 
describe the most distant point of the border areas of 
plasticity, but do not give an accurate assessment of 
the direction of the crack.From micropictures from 
Khan and Rosenfeld, in the case of plane stress, a 
form of plastic zone is most like the one that was 
presented Tuba, figure 5. [7,8] 

 

 
 

Figure 5 – The forms of plastic zones  
for fracture type I according Tuba [7, 8] 

 
By numerical calculations we obtained forms of 

zone of plasticity (Figure 6) that consistent with the 
theoretical calculations made by Tuba. The 
numerical results (Figure 4 and Figure 6) describe 
the shape of plastic zone near the crack tip. 
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a b 
 

Figure 6 – Forms of plasticity zones based on the results of calculations:  
a – plane strain; and b – plane stress 

 
 
Conclusion 
 
Since the theoretical studies do not give an 

accurate picture of the shape of plastic zone, and 
experimental studies have certain difficulties 
(experimentally difficult to distinguish between 
elastic and plastic deformation; measurements are 
performed on the sample surface), conducted 
numerical investigations are reasonable addition to 
research of zones of plasticity around the crack. 
Consideration of the cracks in the form of elliptical 
cutout simplifies the numerical implementation of 
the task. Modern computer technology makes it 
possible with the required accuracy to describe the 
process of elastoplastic flow around the crack of any 
shape. 
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