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Stopping power and straggling in two-component plasmas 

 
 

Abstract. Stopping power S is one of the tools of plasma diagnostics. Particularly, the "minus first" 
(projectile) velocity power moment of the plasma stopping power or the stopping high-velocity 
asymptotic form. Usually, the interaction of target electrons with the plasma ions is neglected. 
Nevertheless, the target plasma electron-ion static structure factor influenceson the plasma polarizational 
stopping power. This effect hasbeen studied using the Feynman-like form for the plasma loss function

1( , ) Im ( , ) /L k k      stemming from the canonical solution of themoment problem of 
reconstruction of the system inverse dielectric function 1( , )k  . The same approach is employed in the 
present work tostudy the two-component non-ideal degenerate plasma straggling and itshigh-velocity 
asymptotic form. At the same time, the non-canonical solution of the moment problem is used to calculate 
the straggling at anyprojectile velocity. Note that in hot equilibrium plasmas (T>>TF) the straggling is 
just 2 (2 )Bk T S  . 
Key words: two-component plasmas, stopping power, straggling, loss function 

 
 
Introduction 
 
Plasma stopping power 
The laser-induced or heavy-ion-induced 

implosion of fusion fuel pellets startsfrom normal 
solid-state conditions and leads to the extreme 
conditions of inertially confined plasmas in a 
distinct domain of warm dense matter (WDM) 
ofhigh densities and temperatures. Usually, the 
plasma stopping power is definedas the magnitude 
of the mean energy loss per unit path length:

/S E x   . Clearly, the treatment of the stopping 
power of these manmade plasmas requirea quantum-
mechanical formulation in all ranges of plasma 
coupling and degeneracy. The quantum-mechanical 
description of the energy loss in a way that canbe 
immediately applied to plasmas under various 
conditions was obtained anddiscussed in detail in [1, 
2, 3] to name a few. The polarizational contribution 
to the stopping power S of an electron one-
component plasma relates it to the system loss 
function L(k, ω) = – Imε–1(k, ω)/ω, where  

1( , )k 

  is the plasma inverse dielectric function: 
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where υ, Zp e are the projectile velocity and charge. 
A contemporary discussion of the topic can be 
found in [4].  

 
Method of moments 
 
The stopping power is also an important tool of 

plasma diagnostics. Particularly, the "minus first" 
(projectile) velocity power moment of the stopping 
power [5] or the stopping high-velocity asymptotic 
form [6], 
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where ωp is the plasma frequency. Usually, the 
interaction of target electrons with the plasma ions 
is neglected in the stopping power. Nevertheless, the 
target plasma electron-ion static structure factor 
influences the plasma polarizational stopping power. 
This effect has been studied using the Feynman-like 
form for the plasma loss function [7]: 
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stemming from the canonical solution of the 
moment problem of reconstruction of the system 
inverse dielectric function 1( , )k   [8]. Here, the 
characteristic frequencies 
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are the power frequency moments of the loss 
function. Due to the parity of the latter, all odd-
order frequency moments vanish. The even-order 
frequency moments are determined by the static 
characteristics of the system. After a straightforward 
calculation one obtains: 
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with  2 2 2 4 2 2 2( ) / (2 ) / ,  e p eK k k k m    

being the average squared characteristic velocity of 
the plasma electrons. The last two terms in the 
fourthmoment stem from the interaction 
contribution to the system Hamiltonian and can be 
expressed in terms of the partial structure factors
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where we have introduced 
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and plasma is modelled as a hydrogen-like system 
with e in Zn . The Nevanlinnaformula of the theory 

of moments expresses the dielectric function, which 
satisfies the known sum rules 2
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in terms of a function ( , )q q k z , which is analytic 
in the upper complex half plane Im 0z  and 
possesses there a positive imaginary part. It must 
also satisfy the limiting condition: ( ( , ) / ) 0q k z z  as 
z   for Im 0z  . In an electron liquid, the 
Nevanlinna parameter function plays the role of the 
dynamic local-field correction (LFC) G(k,ω). In 
particular, the Ichimaruvisco-elastic model 
expression for G(k,ω) is equivalent to the 
Nevanlinna function approximated as / ,  m mi   being 
the effective relaxation time of the Ichimaru model 
[9]. In a multi-component system, the Nevanlinna 
parameter function stands for the species’ dynamic 
LFC’s. In general, we do not have enough 
phenomenological conditions to determine the 
function q(k,ω) which would lead to the exact 
expression for the loss function. One might benefit 
[8] from the Perel’ – Eliashberg [10] expression for 
the high-frequency asymptotic form of the 
imaginary part of the dielectric function of the 
system considered here,  
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This result also implies that higher even-order 

frequency moments, 2 ( ),  3,lC k l   diverge. The 
model (3) corresponds to the limiting case with 

( , ) 0 .q k i   It was shown in [7] using (3) that in a 
hydrogen-like two-component plasma, (2) is 
substituted by 
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Energy-loss straggling 
The second quantity of interest to characterize 

the slowing down process isthe energy-loss 
straggling 2 ( ),v  which describes the statistical 
fluctuations ofthe energy loss of the particle and is 
defined [2] as the square of the standarddeviation of 
the energy-loss distribution per unit path length, i.e., 
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The polarizational contribution to the straggling 
is also defined by the systemloss function: 
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where 1  is the target plasma temperature. Now, the 
same procedure whichled to (6) for the straggling 
asymptotic form give the following expression: 
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It is well known that in classical systems

2( 0),  ( ) 2 ( ) /v S v    . Similarly, when 
0  and 0,  
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We have calculated both the stopping and 

straggling and their asymptoticforms. The NPF was 
chosen to satisfy the Perel’-Eliashberg asymptotic 
form(5): 
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Figure 1 – The stopping power (red line)and straggling 

(blue line), and their asymptotic forms (dashed lines 
ofrespective colors) for Г = 1.077. 

 

 
Figure 2 – As in Fig. 1, but for Г = 0.11 

 

 
Figure 3 – As in Fig. 1, but for Г = 0.011: 
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Results and conclusion 
 
The target plasma static structure factors were 

calculated in the hyper-netted approximation. The 
results are presented in Figs. 1-3, where the stopping 
power and straggling, and their asymptotic forms for 
very fast projectiles are displayed for rs=2.5256 and 
two different values of the coupling parameter 
Γ � ��������/3� , sr  being the Brueckner 
parameter. These numericaldata tentatively confirm 
the above analytic results, which might serve for the 
WDM diagnostics. 
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