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3 UFHe   plasma, generated in the core  
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Abstract. In the present paper experimental results of probe measurements in nuclear induced plasma in 
the presence of negative ions are presented and used to define the ratio of electrons and negative ions di-
rectly taken from electrostatic probe volt–ampere characteristic (VAC) inserted in the  mixture. 
The nuclear induced plasma in the core of nuclear reactor was created by the following nuclear reaction 
3 . The quantitative analysis is also developed to get detailed explanations of 
the probe diagnostics technique and to define the density of negative ions in gas mixtures like 3  
where the electrons and negative ions are presented in unknown proportion. Experimental study of ura-
nium hexafluoride plasma of high pressure is an important part of a comprehensive problem to get effi-
cient direct conversion of nuclear energy of fission fragments not only into the heat transfer but also into 
some other different forms of energy. Probe diagnostics of uranium hexafluoride in the WWR–K is a 
unique experiment and has been done for the first time in the former Soviet Union [1]. 
Key words: helium, uranium hexafluoride, mixture, probe diagnostics, nuclear energy, fission fragment. 

 
 
Introduction 
 
Commonly known that electrostatic probe is 

used as a primary diagnostic tool in the measure-
ment of the local parameters of the ionized gas in a 
variety of medium [2–3], such as the electrical dis-
charge and afterglow, the ionization boundary re-
gion behind the shock waves, flames, MHD genera-
tors, plasma jet, as well as atmospheric and space 
plasmas. Despite its limited area of application the 
probe techniques of experimental measurements are 
very successful and rapidly developed in recent 
years. In some special cases like plasma diagnostics 
in the core of active of nuclear reactor the probe di-
agnostic methods is left as the only one possible 
experimental technique which makes possible to 
extract nuclear induced plasma property information 
(figure 1). Electrostatic probe represents substantial-
ly a metal electrode placed in the diagnostic cell, 
inserted in the active zone of nuclear reactor and 
within which the tested mixture is uploaded .The 
probe diagnostics experimental set in nuclear reactor 
is schematically presented on the Figure 2 [4, 8]. 

1–Helium –3 plasma +UF6 admixture, 1–Helium–3 
plasma. 

Figure 1 – Volt ampere characteristics of electrostat-
ic probes in the core of nuclear reactor. 

 
The plasma apparatus is relatively simple, how-

ever, the theory of electrical probes complicated by 
the fact that the probes are boundary surface with 
respect to the plasma, and the equations describing 

3HeUF6
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�� � �� + (����
���
� )

�
�.                  (17) 

 
For the interpretation of the VAC it is necessary 

to evaluate the ion composition of the plasma. In the 
model the following elementary processes are taken 
account. High–energy fission fragments, which are 
formed by the interaction of thermal neutrons with 
235U, characterized by an initial energies lying in the 
range 50–115 MeV, the initial charge of +16e to 
+24e and weights from 70 to 160 amu. Under the 
influence of high uranium fission fragments in the 
gas a cascade of fast electrons is formed. These 
electrons and fission fragments produce ionization 
of molecules 

 
��� + (��) → ���� + � + (��)�,        (18) 

 
��� + (��) → ���∗ + (��)�,           (19) 

 
��� + (��) → ��� + � + � + (��)�,    (20) 

 
��� → ��� + �� ���∗ → ��� → ��� + ��,   (21) 

 
where ff – fission fragments, UF – uranium hexaf-
luoride, F – fluorine. 

The rates of ionization and excitation per unit 
volume, estimated by the formula: 

 
�� � ���� �

�� ��,                      (22) 
 

where ��� – unbipolar diffusion coefficient of nega-
tive ions. 
 

�� � ����������,                   (23) 
 

where Φ – thermal neutron flux, ���� – nuclear reac-
tion cross section, E – energy division, N – concen-
tration of fissile material, �� – the energy cost of a 
corresponding product in this reaction. 

The total cross section of the positive ions in the 
plasma of uranium hexafluoride in collisions of 
electrons with gas molecules, since the threshold to 
1 keV. In the same paper we present plots of the 
total current of negative ions, which are produced by 
collisions of low–energy electrons (E  10 eV) with 
a molecule of UF6, and is the dominant ion ��� –. 
Total current peaks are observed in the energy range 
(2.10.1),  7 and  11 eV. Formation ��� – is rea-
lized in accordance with the reaction: 

 

� + ��� → ���� + �.                 (24) 
 
Same processes of electron attachment are lead-

ing to the formation ���– characterized by a rather 
low rate. It is considered that leads to the emergence 
of ��� – exchange reaction: 

 
���� + ��� → ���� + ���.              (25) 

 
It is known that under the influence of radiation 

complex molecules substances are destroyed. The 
most significant destructive effect produces fission 
fragments. ��� molecules under the influence of the 
radiation of the reactor will be destroyed at the low-
er fluorides and fluoride. Under the assumption that 
the dissociation of UF6 molecules is via  

 
��� → ��� + ����.                 (26) 

 
Equation 26 determines the rate of destruction of 

���– per unit of power. Within the measurement 
error rate of radiolysis of UF6 molecules is indepen-
dent of pressure and dose rate and amounts to 0.28 
mol / kWh of energy absorbed or (0.80.1) mole-
cules / 100 eV. However, it is known that uranium 
fluorides are relatively easy might be fluorinated 
with increase of gas temperature: 

 
��� + � +� → ��� +�,               (27) 

 
��� + �� + � → ��� + �,             (28) 

 
where M – the third particle. 

According to [9], uranium hexafluoride is ther-
mally stable compound. Decomposition of ��� into 
fragments can be observed at temperatures above 
2200 K. 

The above mentioned positive and negative ions, 
electrons, and the dissociation products interact 
strongly with one another. 

The constants of plasma–chemical reactions for 
��� might be estimated and taken from [8 and 9]. 

 
� + � +� → �� +�.                (29) 

 
� + �� → �� + �.                   (30) 

 
� + ���� → �����

������
.                  (31) 

 
� + ���� +� → ��� + �.          (32) 
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�� � ��� � ���� � �.             (33) 
 

���� � ���� � ����.              (34) 
 

���� � ���� � � � ���� � ��� � � � �. (35) 
 

���� � �� � � � ��� � � � �.       (36) 
 

���� � �� � ��� � �.                (37) 
 

The system of equations described mathematical 
model was solved numerically. To match the expe-
rimental conditions to study plasma probe method in 
the submitted calculations pressure ��� assumed to 
be 20 Torr, the thermal neutron flux varies from 3 to 
1.5 * 1011 * 1013 neutrons cm–2s–1. Further, in view 
of the fact that the probe measurements were carried 
out for 2–3 hours, we believe that under these condi-
tions the concentration of uranium hexafluoride, 
��� in (23) is equal to the original content. As an 

example, in Table 1 shows the results of calcula-
tions for the conditions of the experiments. 

As it is shown in Table 1, main negative ions in 
the mixture are ���� ions  . Positive ions concentra-
tion is the concentration of ���� ions   (up to five 
digits). The density of ���� determined by the ioni-
zation and recombination reactions .The electron’s 
density is negligibly small. The calculation results 
show that the ratio of the electron density to the total 
concentration of negative ions is of the order of 10–4. 
The electron’s density is also determined by the io-
nization and attachment to molecules of ���. The 
numerical calculations confirm that the concentra-
tion of negative ions is much greater than the con-
centration of electrons and corresponds to the results 
obtained from the analysis of the CVC. Furthermore 
the concentration of negative ions proportional to 
the square root of the value thermal neutron flux, i.e. 
 √Φ, the electron density is linear proportional to 
the neutron flux, i.e.  Φ.  

 
 

Тable 1 – Density of uranium hexafluoride plasma ions 
 

ne UF6
+ UF6

– UF5
– F– 

5.9*106 2.6*1011 2.6*1011 2.1*106 4.2*104 
F F2 UF5 UF4  

7.7*1013 7.7*1016 3.9*1014 4.0*104  
 
 
Conclusions 
 
The experimental VAC in some regions is linear 

function of probe’s current and its potential and the 
slopes of the curve might be used to measure the 
electrons and negative ions ratio. On figure 5 the 
measured current–voltage characteristics of the elec-
tric probe in the plasma of uranium hexafluoride are 
presented. It was established that the CVC corres-
ponding reactor power level of 100–200 kW are 
symmetric. From the symmetry of the characteris-
tics we may come to the following conclusions: 
firstly, the contribution of the electrons in the plas-
ma conductivity is negligibly small, i.e., n�μ� =
n�μ� , however, since μ� ≪ μ�, then it comes to be 
that  n� ≫ n�. 

 
Figure 5 – Voltage characteristics of uranium hexaflu-
oride at different power levels in the sample 3He+UF6 , 
irradiated by neutron flux of nuclear reactor WWR–K 

(1–1.1012 cm–2s–1, 2–110 13cm–2s–1). 
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The kinetic model of plasma UF6 and numerical 
calculation of ionic composition of the plasma also 
confirms this relationship. From the analysis of the 
results of calculations we may state that the ion con-
centration UF�� = UF�� (up to the fifth sign) 
and UF��(UF��)~√Φ, n�~Φ, (Φ – thermal neutron 
flux). The experimental and calculated values of the 
concentrations of positive ions are in a satisfactory 
agreement. 
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