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Abstract. In the present paper experimental results of probe measurements in nuclear induced helium 
plasma are presented and analyzed. Both parts of volt–ampere characteristics (VAC) of the probe are used 
to get the density of electrons and positive ions in plasma. Plasma is formed by products of the reaction 
3�� � � � � � � � �.����� and studied under the pressure to be equal 760 torr and neutral flux about 
1013–14 cm–2 s–1. The linear part of VAC and its slope might be used to evaluate density and temperature of 
the studied plasma. In some special cases like plasma diagnostics in the core of active of nuclear reactor 
the probe diagnostic methods is the only one possible experimental technique which makes possible to 
extract nuclear induced plasma property information. Electrostatic probe represents substantially a metal 
electrode placed in the diagnostic cell, inserted in the active zone of nuclear reactor and within which the 
tested mixture is uploaded. 
Key words: helium, plasma, nuclear induced plasma, flux of thermal neutrons, volt ampere characteristics. 

 
 

Introduction 
 

Commonly known that electrostatic probe is used 
as a primary diagnostic tool in the measurement of the 
local parameters of the ionized gas in a variety of me-
dium [1], such as the electrical discharge and after-
glow, the ionization boundary region behind the shock 
waves, flames, MHD generators, plasma jet, as well as 
atmospheric and space plasmas. Despite its limited 
area of application the probe techniques of experimen-
tal measurements are very successful and rapidly de-
veloped in recent years. The probe diagnostics expe-
rimental set in nuclear reactor is schematically pre-
sented on the figure 1. 

The plasma apparatus [3,7] is relatively simple, 
however, the theory of electrical probes complicated 
by the fact that the probe is boundary surface to the 
nuclear induced plasma, and the equations describ-
ing the behavior of the plasma near the interface are 
nonlinear [2]. The plasma created in the active zone 
of a nuclear reactor has a number of specific fea-
tures. These include, in particular, inseparably re-
lated problems: chemical aggressiveness and toxici-
ty of raw materials, the impossibility of direct con-

tact with the experimental set due to induced ra-
dioactivity, making all of the experimental appara-
tus is only a one-time use as well as the obligatory 
remote control of the experiment set due to the irre-
versible structural changes in the measurement and 
diagnostic devices connected with strong radiation 
[3]. Plasma, created by fission fragments was initial-
ly described in the following papers by Leffert C.B. 
Reese D.B., Nguyen D. H., Grossman L.M. and 
Guyot J.C., Miley G.H., Verdeyen J.T. [4–6]. But 
direct probe measurement was undertaken in the 
present paper and the experimental studied in [3]. 

 
Experimental volt ampere characteristics analysis 
 
The test ampulla of the 3He gas was inserted in 

the flux of thermal neutrons absorbs thermal neu-
trons creating highly energetic particles, which 
cause in its own turn the ionization of the working 
medium through the following channel: 

 
��� � � � � � � � �.�����,            (1) 

 
where n – neutron, p – proton, T – tritium. 
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of molecular ions He+2. He+2 recombination time is 
large, and time conversion to He+3 ions is small, so the 
ions He+2 are also negligible.The ratio of the 
concentration of ions He+ and He+2, He+3 concentration 

is around of  10–3– 10–2. In connection with the above, 
the main channel for electron loss is a reaction of 
dissociative recombination with ions He3 +. The results 
of these calculations are presented in Figure 6. 

 

 
 

Figure 6 – Time dependence of ions and electrons density in nuclear induced helium plasma. 
 
 
The concentrations of electrons and ions derived 

from experimentally measured current–voltage 
characteristics are shown in Table 1. The results are 
in good agreement, both among themselves and with 
the results of numerical calculations.The 
experimental VAC in some regions is linear from 
probe potential and the slopes of the curve might be 
used to evaluatethe density and temperature  of 
electrons in nuclear induced plasma. 
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