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Exploring the Impact of Anisotropy Parameters on Stellar Structure

Abstract. In this study, we examine how variations in local pressure anisotropy affect the internal structure
and equilibrium of white dwarfs. A generalized anisotropy model is developed, defined by three parameters:
the amplitude coefficient 0o and the shape exponents / and k. This formulation ensures that the anisotropic
pressure continuously vanishes at both the center and surface of the star while reaching a single peak in the
intermediate region. By applying appropriate boundary and regularity conditions, the model allows us to
determine physically stable parameter domains consistent with realistic stellar configurations. Our analysis
shows that even a small degree of anisotropy can have a measurable effect on the mass-radius relation and
overall compactness of white dwarfs, which may help explain the origin of super-Chandrasekhar systems
observed in astrophysical data. This modeling approach provides a clear and flexible way to describe com-
pact stars with anisotropic pressures and can also be applied to neutron and quark stars.
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Introduction

White dwarfs, neutron stars, and black holes
serve as natural laboratories for probing general
relativity in strong gravitational fields. The
equilibrium of such dense objects arises from the
interplay between the curvature of spacetime and the
distribution of matter, as expressed through
Einstein’s field equations [1-3]. In the case of white
dwarfs, the internal balance between gravity and
pressure is usually represented by the Tolman—
Oppenheimer—Volkoff (TOV) equations, which
describe  hydrostatic  equilibrium under the
assumption of isotropic pressure, meaning that the
radial and tangential components are equal [4,5].

In realistic astrophysical conditions, strong
magnetic fields, rapid rotation, and phase transitions
can break isotropy, producing directional pressure
differences inside compact stars[6—10]. When these
effects become significant, the radial pressure p: no
longer coincides with the tangential pressure p;, and
their difference changes both the internal density
profile and global parameters such as total mass,
radius, and compactness.

Recent observations indicate that compact stars
may exhibit measurable pressure anisotropy. The
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supernovae and highly magnetized white dwarfs
points to additional internal stresses that may serve
as extra pressure support beyond the isotropic limit
[13—15]. Theoretical results further suggest that
anisotropic stresses can increase the maximum
stable mass and shift the boundaries of stability,
implying that anisotropy plays a crucial role in the
structural and evolutionary properties of compact
stars. Therefore, incorporating anisotropy into
stellar models allows for a more realistic
interpretation of  precision astrophysical
observations.

The theoretical treatment of anisotropy in self-
gravitating systems has a long history. Bowers and
Liang proposed a linear dependence of anisotropy on
density and radius[6]. Later developments by Dev
and Gleiser, Herrera and Santos, and other authors
introduced more general formulations, including
nonlinear or gradient-dependent terms that relate the
anisotropy to variations in the gravitational potential
and energy density [7,16,17].

Our previous investigation [18] demonstrated
that even a moderate level of anisotropy can
significantly modify the equilibrium configuration
and shift the mass-radius relation toward more
compact states. These results motivated us to develop

Int. j. math. phys. (Online)


https://orcid.org/0000-0001-9857-0658
https://orcid.org/0000-0002-5699-4476
https://orcid.org/0000-0002-1957-2768
https://orcid.org/0000-0001-9920-5193
https://orcid.org/0000-0002-7833-4858
https://orcid.org/0009-0004-5810-2963
https://orcid.org/0009-0007-4444-9335

S. Toktarbay et al. 5

of describing a broader range of anisotropic
behaviors.

In this study, we extend earlier models by
introducing a generalized anisotropy function
defined by three parameters: the strength coefficient
o, and two shape parameters / and k. This functional
form ensures that anisotropy smoothly vanishes at the
stellar center and surface while exhibiting a single
extremum within the interior region, consistent with
boundary and regularity requirements. The proposed
parameterization unifies several existing models as
limiting cases and allows a systematic study of how
anisotropy affects stellar equilibrium across different
regimes.

Beyond static balance, anisotropy may influence
dynamic and observational characteristics of
compact objects, including oscillation frequencies,
collapse processes, gravitational redshift, and
emission properties [19-22]. The purpose of this
study is to explore how changes in the anisotropy
parameters influence the internal pressure profile of
compact stars and to identify regions of parameter
space that correspond to stable equilibrium states.
The developed approach serves as a groundwork for
future analyses of anisotropic behavior in various
dense astrophysical objects, including neutron and
quark stars.

Theoretical framework

To examine how pressure anisotropy affects
stellar equilibrium, we consider a static, spherically
symmetric stellar configuration described by the
metric:

ds> =e""dt* —e*dr* -

, ; 6]
—r? <d92 +sin’ «9d(02)

In this metric, v(r) and l(r‘) are gravitational

potential functions determined by Einstein’s field
equations. The energy—-momentum tensor for an
anisotropic fluid is given by:

Tﬂa Zdl'ag(,O,—p,,_Prs_Pt)’ )

In this tensor, p represents the energy density, p,

the radial pressure, and p, the tangential pressure.

The degree of anisotropy is characterized by the
difference:

A(r)=p,(r)—p,(r), 3)

where A(r) is referred to as the anisotropy factor,

A positive A >0 corresponds to additional
tangential pressure support, whereas a negative
A < 0 indicates that radial pressure dominates.

By substituting the anisotropic energy—
momentum tensor into Einstein’s field equations, we
obtain the Tolman—Oppenheimer—Volkoff (TOV)
equations with an extra anisotropy term [4,5], given
as Equations (4) and (5).

d
AN _ 4y e, (4)
dr
4 3
dp, __(ptp)m+arrp) ,a )
dr r(r—2m) r
These equations govern the hydrostatic

equilibrium of an anisotropic fluid sphere. In the
A=0, p,=p,, the

anisotropic contribution vanishes and the standard
isotropic TOV solution is recovered.

limiting case where

Pressure Anisotropy in Compact Stars

When modeling the interior of a compact star, the
usual assumption is that pressure is isotropic,
meaning it is the same in all directions. However,
under many realistic physical conditions this
assumption breaks down. In such cases, the radial
pressure pr no longer equals the tangential pressure
p, and the configuration develops pressure
anisotropy. The anisotropy factor A defined above
quantifies the magnitude of this pressure difference.

Several physical mechanisms can give rise to
pressure anisotropy, including:

Strong magnetic fields,
directional pressure gradients [8].

Rapid rotation, which leads to equatorial
flattening and an uneven pressure distribution [6].

Phase transitions in dense matter, for example
quark deconfinement or crystallization, which alter
the internal pressure balance [12].

Local microphysical interactions in self-bound or
charged fluids, which produce internal anisotropic
stresses [7, 16].

which introduce
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Representative Models of Anisotropy

A number of phenomenological models for the
anisotropy factor A have been proposed in the
literature. For instance:

¢ Bowers & Liang (1974): This model assumes
that A grows linearly with the local density and the
radial coordinate [6] (see Equation (7)). In their linear
formulation, A is a constant and R is the total stellar
radius.

A(r)=ﬂp(r>(1—§j, ©)

e Dev & Gleiser (2002): These authors proposed
a power-law form for the anisotropy factor [7], given
by Equation (8). The power-law behavior yields only
a mild anisotropic effect near the center of the star,
but allows much stronger deviations from isotropy
toward the stellar surface.

A(r)=ar’ (,0 + pr) (7)

e Herrera & Santos (1997): Herrera and Santos
outlined general criteria for anisotropy and presented
models in which A depends explicitly on the pressure
gradient and the gravitational potential [8]. This
approach effectively describes anisotropy arising
from underlying thermodynamic forces within the
star.

Each of these models offers certain advantages
but also has notable limitations in flexibility. In
particular, it can be challenging for any single model
to satisfy  observational constraints  while
simultaneously maintaining physically reasonable
behavior at the star’s center and surface.

Behavior of the Generalized Anisotropic
Factor

Dimensionless Transformation and Parameter
Scaling

In this work, we propose a generalized form of
the anisotropy factor that introduces three tunable
parameters [18]:

k
Ar)=ar'|1-] = 8
(r)=ar (Rj (3)

where o is a dimensional constant that controls the
strength of anisotropy, and /, k£ are dimensionless
shape parameters. The function vanishes at the center
(r = 0) and at the surface (r = R), and reaches a
maximum or minimum at some intermediate radius.

To simplify numerical integration, we introduce
dimensionless variables:

X =

£ ©)
b b

-
b

where b is a characteristic length scale that depends
on the central density and the equation of state. By
equating the dimensional and dimensionless
expressions, we obtain

4

~ c p X
A(x):aoﬁx I-| — (10)
Gb X,
which leads to the scaling relation
a=q 2 (11)
0 Gb2+l 2

here, b plays an essential role in connecting the
model’s dimensionless formulation to physical
quantities. Its value is computed numerically and
reflects the influence of both central density and
microphysical assumptions.

The characteristic pressure in relativistic stellar
models is typically of the order

4
C

e

D. (12)

To ensure that the anisotropic pressure remains
smaller than the dominant isotropic term, we typical-

ly constrain oo within the interval —1 < ¢, <1. This

condition helps maintain hydrostatic equilibrium and
avoids instabilities that could arise if anisotropic
contributions were too large near the core.

Boundary conditions

We next analyze the mathematical structure of
the generalized anisotropic factor given in
dimensionless form by
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A(x) = apx' (1-x*) (13)

where x =1/R is the normalized radial coordinate, and
I, k are shape-controlling parameter, for numerical
calculations we take R =1.

The function of anisotropic factor is designed to
satisfy three physical conditions:

_ Vanishing at the center of the star: A(x) =0
- Vanishing at the surface of the star: A(l) =0

Regularity conditions

To ensure A(x) =0, the x! must approach zero
as x — 0. This is satisfied when

[>0 (14)

At the surface x =1, the term 1— x* vanishes
for any nonzero k, so we have

Numerical Analysis of Parameters /, k and a

This section presents a systematic numerical
analysis of the generalized anisotropic factor defined
in Eq. (13), focusing on its behavior under various
combinations of the parameters /, k, and the strength
coefficient ay. The function is designed to vanish at
the center and the surface of the star, and to reach an
extremum at an intermediate radius. Our aim is to
classify parameter sets into physically viable, edge-
case, or irregular regimes based on the regularity and
structure of the anisotropy profile.

For —1£a0<1

To investigate the influence of the shape
parameters 1 and k, we computed the anisotropy
factor A(x) for a range of values with ay € [-1, 1],
which ensures that the anisotropic pressure remains
comparable to the isotropic pressure. Each figure in
this subsection corresponds to a fixed pair (/, k), and

~ ; B :
A(l) = 1 (1—1 ): 0 (15)  the plotted curves show the radial dependence of
which holds generally for all real k£ # 0. A(x) for various values of a.
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Figure 1 — Radial variation of the anisotropy parameter A(X) for different values of o

and combinations of 1 and k. Each subplot corresponds to a fixed (/, k), with curves showing variations in o,
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As shown in Figure 1, when /> 0 and £ > 0, the
anisotropy profile is smooth and bounded across the
domain. The function peaks at an intermediate radius

I=—1, k=1

1.5% 107}
LOx107F
5.0 109F!

A O+

-5.0% 109k
-1.0x10F;

~1.5x107F:

0.0 0.2 0.4 0.6 0.8 1.0

X

and naturally vanishes at the boundaries x = 0 and x
= 1, consistent with physical expectations for
equilibrium models.

l=ll.k=fl

oab e e

02 ----- ap= 0.1

—o04f

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 2 — Radial profiles of A()C) for fixed / = k = —1, illustrating nonphysical behavior.

Curves with / = —k are shown for varying values of a

In contrast, parameter combinations with
negative values of / or k, such as /=—1 or k=—1, lead
to pathological behavior, including steep gradients
and unbounded profiles. These are visualized in
Figure 2. While the boundary conditions are
mathematically satisfied, the resulting profiles often
include sharp internal spikes or asymmetries that may
challenge physical viability.

Strong Anisotropy Regimes (|a0| >1)

We extended the analysis to include stronger
anisotropy values: oy = +2, £3, +4, to explore how
extreme deviations from isotropy affect the radial
structure. These values may be relevant in contexts
involving strong magnetic fields or rapid rotation in
compact stars. Figure 3 demonstrates that for /> 0, k
> 0, the anisotropy profiles remain regular and
bounded even for large magnitudes of a,. The peak
amplitude increases with |ag|, but the overall
structure is preserved, making these configurations
reliable for further physical modeling.

We also examined marginal cases such as / =
3,k=—1and /=0.9, k=-0.5, illustrated in Figure

4. These models satisfy the boundary conditions,
yet their internal anisotropy gradients are
significantly  steeper, suggesting increased
internal  stresses. While  mathematically
consistent, these edge cases may correspond to
unstable configurations and require further
dynamical or perturbative analysis to confirm
their viability.

Classification of Behavior

Now we can set the behavior of the anisotropic
factor as follows:

* Regular cases: / > 0, k£ > 0 with moderate or
strong oy, producing smooth and

bounded profiles.

* Edge cases: Mixed sign parameters or small
positive /, k, resulting in steep but bounded internal
gradients.

o Irregular cases: Negative / and/or k, yielding
divergent or highly asymmetric profiles.

This classification serves as the basis for
determining physically acceptable parameter space
regions that can be used in equilibrium modeling and
observation prediction for anisotropic compact stars.
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Figure 3 — The anisotropy profiles with positive /> 0 and £ > 0 for large magnitudes of «
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Figure 4 — The behavior of the dimensionless anisotropy function
for strong regime o, /, k, for positive values of /> k> 0
The findings above suggest that pressure and the shape parameters / and k£ which determine its

anisotropy influences how matter is distributed inside
compact stars. Even simple deviations from isotropic
conditions can shift pressure gradients, which can
affect stellar stability and lead to changes in global
characteristics such as mass and radius [19-22].

Discussion and Summary

This paper presented an analysis of how extended
anisotropic  pressure modifies the internal
equilibrium of compact stars. We introduce a
generalized anisotropic factor defined by three
parameters: oo which sets the strength of anisotropy,

radial profile. The model is constructed to satisfy
standard boundary conditions and to allow flexible
control over how anisotropy changes with radius.

The numerical study shows that when both
shape parameters take positive values, the pressure
inside the star forms a regular and physically
reasonable pattern. In this regime, the pressure is
nearly isotropic at the center and surface, while a
clear maximum appears at an intermediate radius.
Such a trend agrees with what might be expected
from slow rotation or magnetic effects, suggesting
that the model can represent realistic stellar
configurations.
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When the anisotropy strength is increased, the
amplitude of pressure differences also grows. Yet, for
positive parameter values, the overall pressure profile
remains well behaved even in strongly anisotropic
conditions. This outcome implies that white dwarfs
are able to sustain stable internal structures provided
that anisotropy varies smoothly with radius.

In contrast, if either / or £ takes negative values,
the pressure distribution becomes asymmetric, and
sharp internal variations can arise. Although these
solutions meet mathematical conditions, the resulting
steep gradients may point to possible physical
instabilities or regions of localized internal pressure.

These inputs are essential for solving the TOV
equation and the mass continuity equation within a
consistent and physically meaningful framework.
Earlier investigations have shown that, to first order
in the quadrupole moment, the gravitational field
produced by a slowly rotating compact object can
exhibit refractive characteristics analogous to those
of a static, anisotropic deformed source[23-25]. This
correspondence implies that, under specific physical
conditions, pressure anisotropy within white dwarfs
may replicate the effects typically attributed to slow
rotation, particularly in terms of their influence on
gravitational lensing and the deflection of light rays
[26-28]. Exploring this analogy offers a valuable
framework for identifying observational differences
between anisotropy-induced and rotation-induced
deformations [29, 30]. This allows for the modeling
of a broad class of physically realistic configurations
within a consistent framework and facilitates
comparison with observational constraints [31-33].

The findings provide a coherent basis for
examining how pressure anisotropy affects the
internal balance and stability of compact stars. The
approach developed in this work unifies the
description of anisotropy within a single formulation
that can be applied in future relativistic simulations.

In addition to the theoretical analysis, it is helpful
to compare the obtained results with available
observational data. The calculated range of the
z, ~107 =107,
falls within the values reported for several massive
and strongly magnetized white dwarfs observed in
optical and ultraviolet bands. These measurements
show similar trends: stronger internal stresses are
associated with slightly lower redshift values. This
agreement suggests that the model captures key
features relevant for real compact stars, and the
dependence of the redshift on the anisotropy
parameter may serve as a simple observational
indicator when interpreting spectroscopic data.

Moving forward, this generalized framework can
be extended to different categories of compact
objects, including neutron and quark stars, or other
exotic configurations. In subsequent studies, it may
be combined with realistic physical mechanisms that
generate anisotropy — such as magnetic stresses or
differential rotation — to analyze stability through
both perturbative and time-evolution methods.

surface gravitational redshift,
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