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Exploring the Impact of Anisotropy Parameters on Stellar Structure

Abstract. In this study, we examine how variations in local pressure anisotropy affect the internal structure 
and equilibrium of white dwarfs. A generalized anisotropy model is developed, defined by three parameters: 
the amplitude coefficient α₀ and the shape exponents l and k. This formulation ensures that the anisotropic 
pressure continuously vanishes at both the center and surface of the star while reaching a single peak in the 
intermediate region. By applying appropriate boundary and regularity conditions, the model allows us to 
determine physically stable parameter domains consistent with realistic stellar configurations. Our analysis 
shows that even a small degree of anisotropy can have a measurable effect on the mass-radius relation and 
overall compactness of white dwarfs, which may help explain the origin of super-Chandrasekhar systems 
observed in astrophysical data. This modeling approach provides a clear and flexible way to describe com-
pact stars with anisotropic pressures and can also be applied to neutron and quark stars.
Keywords: compact stars, white dwarfs, anisotropic pressure, stability analysis, generalized anisotropic 
factor.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Introduction 
 
White dwarfs, neutron stars, and black holes 

serve as natural laboratories for probing general 
relativity in strong gravitational fields. The 
equilibrium of such dense objects arises from the 
interplay between the curvature of spacetime and the 
distribution of matter, as expressed through 
Einstein’s field equations [1–3]. In the case of white 
dwarfs, the internal balance between gravity and 
pressure is usually represented by the Tolman–
Oppenheimer–Volkoff (TOV) equations, which 
describe hydrostatic equilibrium under the 
assumption of isotropic pressure, meaning that the 
radial and tangential components are equal [4,5]. 

In realistic astrophysical conditions, strong 
magnetic fields, rapid rotation, and phase transitions 
can break isotropy, producing directional pressure 
differences inside compact stars[6–10]. When these 
effects become significant, the radial pressure pr no 
longer coincides with the tangential pressure pt, and 
their difference changes both the internal density 
profile and global parameters such as total mass, 
radius, and compactness. 

Recent observations indicate that compact stars 
may exhibit measurable pressure anisotropy. The 
discovery of super-Chandrasekhar Type Ia 

supernovae and highly magnetized white dwarfs 
points to additional internal stresses that may serve 
as extra pressure support beyond the isotropic limit 
[13–15]. Theoretical results further suggest that 
anisotropic stresses can increase the maximum 
stable mass and shift the boundaries of stability, 
implying that anisotropy plays a crucial role in the 
structural and evolutionary properties of compact 
stars. Therefore, incorporating anisotropy into 
stellar models allows for a more realistic 
interpretation of precision astrophysical 
observations. 

The theoretical treatment of anisotropy in self-
gravitating systems has a long history. Bowers and 
Liang proposed a linear dependence of anisotropy on 
density and radius[6]. Later developments by Dev 
and Gleiser, Herrera and Santos, and other authors 
introduced more general formulations, including 
nonlinear or gradient-dependent terms that relate the 
anisotropy to variations in the gravitational potential 
and energy density [7,16,17]. 

Our previous investigation [18] demonstrated 
that even a moderate level of anisotropy can 
significantly modify the equilibrium configuration 
and shift the mass–radius relation toward more 
compact states. These results motivated us to develop 
a more flexible and generalized formulation capable 
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of describing a broader range of anisotropic 
behaviors. 

In this study, we extend earlier models by 
introducing a generalized anisotropy function 
defined by three parameters: the strength coefficient 
α0, and two shape parameters l and 𝑘𝑘𝑘𝑘. This functional 
form ensures that anisotropy smoothly vanishes at the 
stellar center and surface while exhibiting a single 
extremum within the interior region, consistent with 
boundary and regularity requirements. The proposed 
parameterization unifies several existing models as 
limiting cases and allows a systematic study of how 
anisotropy affects stellar equilibrium across different 
regimes. 

Beyond static balance, anisotropy may influence 
dynamic and observational characteristics of 
compact objects, including oscillation frequencies, 
collapse processes, gravitational redshift, and 
emission properties [19–22]. The purpose of this 
study is to explore how changes in the anisotropy 
parameters influence the internal pressure profile of 
compact stars and to identify regions of parameter 
space that correspond to stable equilibrium states. 
The developed approach serves as a groundwork for 
future analyses of anisotropic behavior in various 
dense astrophysical objects, including neutron and 
quark stars. 

 
Theoretical framework 
 
To examine how pressure anisotropy affects 

stellar equilibrium, we consider a static, spherically 
symmetric stellar configuration described by the 
metric: 

 ( )
2 ( ) 2 ( ) 2

2 2 2 2sin

v r rds e dt e dr

r d d

λ

θ θ ϕ

= − −

− +
,              (1) 

 
In this metric, ( )v r  and ( )rλ  are gravitational 

potential functions determined by Einstein’s field 
equations. The energy–momentum tensor for an 
anisotropic fluid is given by: 

 
 ( ), , ,r r tT diag p p pα

β ρ= − − − ,           (2) 
 
In this tensor, ρ represents the energy density, rp  

the radial pressure, and tp  the tangential pressure. 
The degree of anisotropy is characterized by the 
difference: 

 ( ) ( ) ( )t rr p r p r∆ = − ,               (3) 
 

where ( )r∆  is referred to as the anisotropy factor, 

A positive 0∆ >  corresponds to additional 
tangential pressure support, whereas a negative 

0∆ <  indicates that radial pressure dominates. 
By substituting the anisotropic energy–

momentum tensor into Einstein’s field equations, we 
obtain the Tolman–Oppenheimer–Volkoff (TOV) 
equations with an extra anisotropy term [4,5], given 
as Equations (4) and (5).  

 
24dm r

dr
π ρ=                        (4) 
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     (5) 

 
These equations govern the hydrostatic 

equilibrium of an anisotropic fluid sphere. In the 
limiting case 0∆ = , where t rp p= , the 
anisotropic contribution vanishes and the standard 
isotropic TOV solution is recovered. 

 
Pressure Anisotropy in Compact Stars 
 
When modeling the interior of a compact star, the 

usual assumption is that pressure is isotropic, 
meaning it is the same in all directions. However, 
under many realistic physical conditions this 
assumption breaks down. In such cases, the radial 
pressure pr no longer equals the tangential pressure 
pt, and the configuration develops pressure 
anisotropy. The anisotropy factor Δ defined above 
quantifies the magnitude of this pressure difference. 

Several physical mechanisms can give rise to 
pressure anisotropy, including: 

Strong magnetic fields, which introduce 
directional pressure gradients [8]. 

Rapid rotation, which leads to equatorial 
flattening and an uneven pressure distribution [6]. 

Phase transitions in dense matter, for example 
quark deconfinement or crystallization, which alter 
the internal pressure balance [12]. 

Local microphysical interactions in self-bound or 
charged fluids, which produce internal anisotropic 
stresses [7, 16]. 
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Representative Models of Anisotropy  
 
A number of phenomenological models for the 

anisotropy factor Δ have been proposed in the 
literature. For instance: 

• Bowers & Liang (1974): This model assumes 
that Δ grows linearly with the local density and the 
radial coordinate [6] (see Equation (7)). In their linear 
formulation, λ  is a constant and R is the total stellar 
radius. 

 ( ) ( ) 1 rr r
R

λρ  ∆ = − 
 

,               (6) 

 
• Dev & Gleiser (2002): These authors proposed 

a power-law form for the anisotropy factor [7], given 
by Equation (8). The power-law behavior yields only 
a mild anisotropic effect near the center of the star, 
but allows much stronger deviations from isotropy 
toward the stellar surface. 

  

( )2( ) rr r pα ρ∆ = +                  (7) 
 

• Herrera & Santos (1997): Herrera and Santos 
outlined general criteria for anisotropy and presented 
models in which Δ depends explicitly on the pressure 
gradient and the gravitational potential [8]. This 
approach effectively describes anisotropy arising 
from underlying thermodynamic forces within the 
star. 

Each of these models offers certain advantages 
but also has notable limitations in flexibility. In 
particular, it can be challenging for any single model 
to satisfy observational constraints while 
simultaneously maintaining physically reasonable 
behavior at the star’s center and surface. 

 
Behavior of the Generalized Anisotropic 

Factor 
Dimensionless Transformation and Parameter 

Scaling  
In this work, we propose a generalized form of 

the anisotropy factor that introduces three tunable 
parameters [18]: 

 

 ( ) 1
k

l rr r
R

α
  ∆ = −     

                (8) 

 

where α is a dimensional constant that controls the 
strength of anisotropy, and l, k are dimensionless 
shape parameters. The function vanishes at the center 
(r = 0) and at the surface (r = R), and reaches a 
maximum or minimum at some intermediate radius. 

To simplify numerical integration, we introduce 
dimensionless variables: 

 

 ,rx
b

= ,f
Rx
b

=                          (9) 

 
where b is a characteristic length scale that depends 
on the central density and the equation of state. By 
equating the dimensional and dimensionless 
expressions, we obtain 
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which leads to the scaling relation 
 

 
4

0 2 l
c

Gb
α α += ,                      (11) 

 
here, b plays an essential role in connecting the 

model’s dimensionless formulation to physical 
quantities. Its value is computed numerically and 
reflects the influence of both central density and 
microphysical assumptions. 

The characteristic pressure in relativistic stellar 
models is typically of the order 

 
4

2c
cp

Gb
 .                            (12) 

 
To ensure that the anisotropic pressure remains 

smaller than the dominant isotropic term, we typical-
ly constrain α0 within the interval 01 1α− < < . This 
condition helps maintain hydrostatic equilibrium and 
avoids instabilities that could arise if anisotropic 
contributions were too large near the core.  

 
Boundary conditions 
We next analyze the mathematical structure of 

the generalized anisotropic factor given in 
dimensionless form by 
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 ( )0( ) 1l kx x xα∆ = −                 (13) 

 
where x = r/R is the normalized radial coordinate, and 
l, k are shape-controlling parameter, for numerical 
calculations we take 1R = . 

The function of anisotropic factor is designed to 
satisfy three physical conditions: 

- Vanishing at the center of the star: ( ) 0x∆ =  

- Vanishing at the surface of the star: (1) 0∆ =  
 
Regularity conditions 
To ensure ( ) 0x∆ = , the 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙 must approach zero 

as x → 0. This is satisfied when 
 

 0l >                                (14) 
At the surface 1x = , the term 1 kx−  vanishes 

for any nonzero k, so we have 
 

 ( )0(1) 1 1 1 0l kα∆ = − =                 (15) 

which holds generally for all real 0k ≠ . 

 
Numerical Analysis of Parameters l, k and 𝛂𝛂𝛂𝛂𝟎𝟎𝟎𝟎 
This section presents a systematic numerical 

analysis of the generalized anisotropic factor defined 
in Eq. (13), focusing on its behavior under various 
combinations of the parameters l, k, and the strength 
coefficient α0. The function is designed to vanish at 
the center and the surface of the star, and to reach an 
extremum at an intermediate radius. Our aim is to 
classify parameter sets into physically viable, edge-
case, or irregular regimes based on the regularity and 
structure of the anisotropy profile. 

 
For 01 1α− ≤ <  

 
To investigate the influence of the shape 

parameters l and k, we computed the anisotropy 
factor Δ�(x) for a range of values with α0 ∈ [−1, 1], 
which ensures that the anisotropic pressure remains 
comparable to the isotropic pressure. Each figure in 
this subsection corresponds to a fixed pair (l, k), and 
the plotted curves show the radial dependence of 

( )x∆  for various values of α0.
 
 

 
Figure 1 – Radial variation of the anisotropy parameter ( )x∆  for different values of α0  

and combinations of l and k. Each subplot corresponds to a fixed (l, k), with curves showing variations in α0 
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As shown in Figure 1, when l > 0 and k > 0, the 
anisotropy profile is smooth and bounded across the 
domain. The function peaks at an intermediate radius 

and naturally vanishes at the boundaries x = 0 and x 
= 1, consistent with physical expectations for 
equilibrium models. 

 
 

 
Figure 2 – Radial profiles of ( )x∆  for fixed l = k = −1, illustrating nonphysical behavior.  

Curves with l = −k are shown for varying values of α0 
 
 

In contrast, parameter combinations with 
negative values of l or k, such as l = −1 or k =−1, lead 
to pathological behavior, including steep gradients 
and unbounded profiles. These are visualized in 
Figure 2. While the boundary conditions are 
mathematically satisfied, the resulting profiles often 
include sharp internal spikes or asymmetries that may 
challenge physical viability. 

 
Strong Anisotropy Regimes ( 0 1α > ) 
We extended the analysis to include stronger 

anisotropy values: α0 = ±2, ±3, ±4, to explore how 
extreme deviations from isotropy affect the radial 
structure. These values may be relevant in contexts 
involving strong magnetic fields or rapid rotation in 
compact stars. Figure 3 demonstrates that for l > 0, k 
> 0, the anisotropy profiles remain regular and 
bounded even for large magnitudes of α0. The peak 
amplitude increases with |α0|, but the overall 
structure is preserved, making these configurations 
reliable for further physical modeling. 

We also examined marginal cases such as l = 
3, k = −1 and l = 0.9, k = −0.5, illustrated in Figure 

4. These models satisfy the boundary conditions, 
yet their internal anisotropy gradients are 
significantly steeper, suggesting increased 
internal stresses. While mathematically 
consistent, these edge cases may correspond to 
unstable configurations and require further 
dynamical or perturbative analysis to confirm 
their viability.  

Classification of Behavior 
Now we can set the behavior of the anisotropic 

factor as follows: 
• Regular cases: l > 0, k > 0 with moderate or 

strong α0, producing smooth and 
bounded profiles. 
• Edge cases: Mixed sign parameters or small 

positive l, k, resulting in steep but bounded internal 
gradients. 

• Irregular cases: Negative l and/or k, yielding 
divergent or highly asymmetric profiles. 

This classification serves as the basis for 
determining physically acceptable parameter space 
regions that can be used in equilibrium modeling and 
observation prediction for anisotropic compact stars. 

 
 
 



9S. Toktarbay et al.

 
Figure 3 – The anisotropy profiles with positive l > 0 and k > 0 for large magnitudes of α0 

 
 

 
Figure 4 – The behavior of the dimensionless anisotropy function  

for strong regime α0, l, k, for positive values of l > k > 0 
 
 

The findings above suggest that pressure 
anisotropy influences how matter is distributed inside 
compact stars. Even simple deviations from isotropic 
conditions can shift pressure gradients, which can 
affect stellar stability and lead to changes in global 
characteristics such as mass and radius [19–22]. 

 
Discussion and Summary 
 
This paper presented an analysis of how extended 

anisotropic pressure modifies the internal 
equilibrium of compact stars. We introduce a 
generalized anisotropic factor defined by three 
parameters: α0 which sets the strength of anisotropy, 

and the shape parameters l and k which determine its 
radial profile. The model is constructed to satisfy 
standard boundary conditions and to allow flexible 
control over how anisotropy changes with radius. 

The numerical study shows that when both 
shape parameters take positive values, the pressure 
inside the star forms a regular and physically 
reasonable pattern. In this regime, the pressure is 
nearly isotropic at the center and surface, while a 
clear maximum appears at an intermediate radius. 
Such a trend agrees with what might be expected 
from slow rotation or magnetic effects, suggesting 
that the model can represent realistic stellar 
configurations. 



10 Exploring the Impact of Anisotropy Parameters on Stellar Structure

When the anisotropy strength is increased, the 
amplitude of pressure differences also grows. Yet, for 
positive parameter values, the overall pressure profile 
remains well behaved even in strongly anisotropic 
conditions. This outcome implies that white dwarfs 
are able to sustain stable internal structures provided 
that anisotropy varies smoothly with radius. 

In contrast, if either l or k takes negative values, 
the pressure distribution becomes asymmetric, and 
sharp internal variations can arise. Although these 
solutions meet mathematical conditions, the resulting 
steep gradients may point to possible physical 
instabilities or regions of localized internal pressure. 

These inputs are essential for solving the TOV 
equation and the mass continuity equation within a 
consistent and physically meaningful framework. 
Earlier investigations have shown that, to first order 
in the quadrupole moment, the gravitational field 
produced by a slowly rotating compact object can 
exhibit refractive characteristics analogous to those 
of a static, anisotropic deformed source[23–25]. This 
correspondence implies that, under specific physical 
conditions, pressure anisotropy within white dwarfs 
may replicate the effects typically attributed to slow 
rotation, particularly in terms of their influence on 
gravitational lensing and the deflection of light rays 
[26–28]. Exploring this analogy offers a valuable 
framework for identifying observational differences 
between anisotropy-induced and rotation-induced 
deformations [29, 30]. This allows for the modeling 
of a broad class of physically realistic configurations 
within a consistent framework and facilitates 
comparison with observational constraints [31–33]. 

The findings provide a coherent basis for 
examining how pressure anisotropy affects the 
internal balance and stability of compact stars. The 
approach developed in this work unifies the 
description of anisotropy within a single formulation 
that can be applied in future relativistic simulations. 

In addition to the theoretical analysis, it is helpful 
to compare the obtained results with available 
observational data. The calculated range of the 
surface gravitational redshift, 4 310 10sz − −− , 
falls within the values reported for several massive 
and strongly magnetized white dwarfs observed in 
optical and ultraviolet bands. These measurements 
show similar trends: stronger internal stresses are 
associated with slightly lower redshift values. This 
agreement suggests that the model captures key 
features relevant for real compact stars, and the 
dependence of the redshift on the anisotropy 
parameter may serve as a simple observational 
indicator when interpreting spectroscopic data. 

Moving forward, this generalized framework can 
be extended to different categories of compact 
objects, including neutron and quark stars, or other 
exotic configurations. In subsequent studies, it may 
be combined with realistic physical mechanisms that 
generate anisotropy ‒ such as magnetic stresses or 
differential rotation ‒ to analyze stability through 
both perturbative and time-evolution methods. 
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