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Numerical solution of the inverse problem
of magnetotelluric sounding

Abstract. This study focuses on the coefficient inverse problem arising in magnetotelluric (MT) sounding,
which plays a crucial role in geophysical exploration and subsurface characterization. The main objective
is twofold: first, to construct a reliable forward numerical model based on the Helmholtz equation
with a complex-valued conductivity coefficient, and second, to develop a stable inversion procedure
for reconstructing the conductivity distribution from boundary measurements. The forward problem is
discretized using a finite-difference approximation, ensuring numerical stability and accuracy for both the
direct and adjoint formulations. To address the ill-posed nature of the inverse problem, a misfit functional
is introduced, measuring the discrepancy between simulated and observed boundary data. This functional
is minimized using the iterative Landweber method, which provides a simple yet robust tool for stabilizing
reconstructions. Numerical experiments are carried out for a synthetic conductivity model consisting of a
smooth background medium with an embedded localized anomaly. The obtained results demonstrate the
ability of the proposed method to recover key structural features of the anomaly. The presented framework
offers a promising foundation for the development of practical inversion algorithms applicable to real
geophysical MT data.

Keywords: Helmholtz equation, magnetotelluric sounding, inverse problem, Landweber method, numerical

https://doi.org/10.26577/ijmph.20251628

solution.

Introduction

A key direction in the study of magnetotelluric
processes is the construction of mathematical models
that reliably describe the propagation of the
electromagnetic field in a conducting medium. In [1],
a generalized methodological framework is presen-
ted, where the formulation of forward and inverse
problems for Maxwell’s equations is discussed, and
the specific features of their solutions under various
physical and geometrical parameters are analyzed.
Significant attention is devoted to the classification
of models — from one-dimensional to multilayered
and anisotropic structures — which plays an essential
role in the selection of appropriate numerical
approaches. Furthermore, that study highlights the
relationship between the full system of Maxwell’s
equations and simplified scalar formulations, such as
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the Helmholtz equation, thereby opening the
possibility of employing advanced numerical
methods commonly used for elliptic problems in the
context of magnetotelluric sounding.

The study of inverse problems in
magnetotellurics has a long history, originating from
the seminal works [2—3] that laid the foundations of
the theoretical description of the method. Tikhonov
proposed the mathematical formulation of the
problem of reconstructing the electrophysical
properties of the deep layers of the Earth’s crust,
while Cagniard developed the classical theory of
magnetotelluric  sounding.  These  pioneering
contributions set the direction for subsequent studies
devoted to the development of inversion techniques
and the interpretation of geoelectrical data.

A widely adopted approach to solving inverse
problems in magnetotellurics is the use of
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variational-regularization ~methods, where the
problem is reformulated as the minimization of a
functional with a regularization term. In this
direction, particular attention should be paid to the
studies [4], where the coefficient inverse problem for
the Helmholtz equation is considered. The author
emphasizes the importance of selecting appropriate
regularization procedures to ensure the stability of
the solution. Similar ideas are further developed in
[5], which addresses an identification problem
related to integrodifferential Maxwell’s equations.
Further works [6-9] demonstrate the
interdisciplinary significance of inverse problem
methods and their application to various areas of
mathematical physics.

A significant contribution has also been made in
the field of rock conductivity analysis. In [10], a
numerical method is proposed for determining the
dielectric permittivity from the modulus of the
electric field intensity vector. Such studies enhance
the interpretation of MT results and improve the
physical justification of constructed models. The
work [11] provides a review of laboratory
measurements of rock conductivity and their
interpretation in the context of magnetotelluric data.
The author discusses the effects of temperature,
pressure, mineral composition, and the presence of
fluids on the electrophysical parameters, as well as
the consistency between laboratory curves and the
results of geophysical inversions. The obtained
relationships help refine the interpretation of MT
results and strengthen the physical validity of
geoelectrical models.

Another important direction is the development
of locally iterative methods, where inversion is
carried out step by step or for separate regions of the
medium. In [12], a quasi-one-dimensional approach
is proposed, based on approximating the
multidimensional problem with a series of one-
dimensional models, each refined at a separate step
of the iterative process. This method reduces
computational costs and improves stability to noise,
particularly in cases with strong geoelectrical
contrasts. A similar logic is implemented in [13],
where a stepwise algorithm is developed using the
integral formulation of the forward problem
combined with sequential parameter correction. Such
discretization ensures numerical stability and allows
adaptation to local features of the subsurface
structure, which is especially important for strongly
stratified models.

Modern studies increasingly employ machine
learning techniques and physics-informed neural
network algorithms. In [14], a deep learning
inversion method incorporating physical equations is
proposed for magnetotelluric data. In [15], a neural-
network-based forward modeling algorithm is
developed and applied to the inversion problem.
These  approaches  significantly  accelerate
computations and provide robustness in processing
large-scale datasets.

The present work is devoted to the numerical
solution of the coefficient inverse problem of
magnetotelluric sounding. For the numerical
simulations, second-order finite-difference schemes
are employed, while the inverse problem is
formulated as an optimization problem and solved
using the Landweber gradient method. The novelty
of the present study lies in proposing a full coefficient
formulation of the two-dimensional inverse problem
of magnetotelluric sounding for the Helmbholtz
equation with a complex-valued conductivity
o(y,z), which makes it possible to consistently
describe both vertical and lateral heterogeneities of
the geoelectrical medium, going beyond the classical
Tikhonov—Cagniard model. Within this formulation,
the variation of the misfit functional is derived
rigorously, and the corresponding adjoint problem
adapted to complex coefficients is constructed, which
has not been presented in existing MT inversion
studies. Furthermore, the Landweber method is
employed directly to solve the two-dimensional
coefficient inverse problem, providing a stable
alternative to commonly used magnetotelluric
inversion approaches such as Gauss—Newton—type
methods. The proposed methodology is demonstrated
through an original numerical experiment involving
a two-dimensional Gaussian anomaly and the
computation of the complex impedance, confirming
its effectiveness.

Materials and Methods

Problem Formulation. This article investigates
the  two-dimensional inverse problem  of
magnetotelluric sounding under E-polarization of the
electromagnetic field. The primary objective is to
reconstruct the spatial distribution of electrical
conductivity based on the known impedance values
measured at the Earth’s surface. The direct problem
is formulated through the Helmholtz equation with a
complex coefficient and the corresponding boundary
conditions in a rectangular area (Figure 1). The
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solution of the inverse problem is carried out using a
gradient-based  method, formulated as the
minimization of a functional.

We now turn to the mathematical formulation of
the two-dimensional inverse magnetotelluric (MT)
sounding problem.

Uyy + Uy + k(y, 2)u =0, —-l<y<l[,0<z<H, (1)
u(=L,z) =u(,z) = g(2), 0<z<H, ()
u,(y,0) + you(y,0) = I, -l<y<l|, 3)
u,(y,H) —ygu(y,H) = 0, —l<y<lLl “)
where k(y, z) = iouo(y, z).
- i ! -
- ¥
H
v

Figure 1 — Domain for the Helmholtz equation

Generalized solution of the two-dimensional MT
sounding problem. In problems where the
coefficients depend on several variables and complex
parameters are involved, the solution may not
necessarily possess classical second derivatives. In
such cases, the concept of a generalized solution in
Sobolev spaces is employed [16-17].

Definition 1. A function u € L,(f2) is called a
generalized solution of the direct problem (1)—(4) if

for any test function ¢ € H?(Q) satisfying the
following conditions:

p(-Lz)=9(,2)=0, (5)
0, (v, H) —yuo(y,H) =0, (6)
0,(7,0) +yo0(y,0) =0, (7)

the following integral identity holds

l H l
f f u((pyy t @z t+ k(p)dy dz — F() f QD(}’: O)dy +
-170 -1

H
+ j (0(~1,2) — p(l, 2))g(2)dz = 0 ®)
0
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By means of Theorem 1, the existence of a
generalized solution to the two-dimensional problem
(1)—(4) is established, and the corresponding a priori
estimate is derived. Similar statements can be found
in studies [16-17].

Theorem 1. Let g€ L?(0,H), [ €C, the
coefficient k(y,z) € L*(2), and the parameters
Yo0,Yu € C. Then there exists a unique generalized
solution u € L2(Q), satisfying the weak formulation
(8), and this solution satisfies the following a priori
estimate:

”u”LZ(Q) < C(”g”LZ(o,H) + |F0|).

where the constant C > 0 depends only on the
dimensions of the domain 2 = (—1I:1) x (0; H) norm
|I’|[ o0 (), and the coefficients y,, yy.

Formulation of the direct and inverse
problems.

In the direct problem (1)—(4), the objective is to
determine the function u(y, z) for given k(y, z) and
boundary data g(z). In the inverse problem, the goal
is to reconstruct the coefficient k(y,z) using
additional observational information.

u(y,0)

“u,(7,0) 2

Zo(y, w) = iwp

The direct problem, defined by equations (1)—(4),
describes the distribution of the complex electric

wWN

l
900 = ) | (@00 100,010 ~ o u(y,0:10) dy

wW=wWq

where Z,(y, w) denotes the impedance computed
from the observational data, and u(y,z;k)
corresponds to the solution of the direct problem for

field u(y, z) in a geoelectrical medium for a fixed
parameter k(y,z) associated with electrical
conductivity. It is well known that k(y, z) is directly
determined by the conductivity distribution, and its
recovery relies on experimentally obtained data.

In magnetotelluric sounding, the primary
observable quantity is the impedance, which
represents the ratio of the electric and magnetic field
components. In the two-dimensional model with E-
polarization, the impedance takes the form (9) and
serves as the only boundary characteristic directly
related to the conductivity coefficient o(y, z). Since
the impedance contains essential information about
both vertical and lateral variations in electrical
conductivity and is widely used in the interpretation
of MT data, minimizing the misfit between the
observed impedance and the impedance
reconstructed by the model is a physically justified
and commonly accepted approach. This choice of the
functional ensures proper agreement between the
model and the physically measurable quantities and
makes the inversion problem consistent with classical
MT interpretation practices.

The main objective of the inverse problem is to
reconstruct the parameter k(y, z) from the known
impedance values Zy(y,w) measured at the
boundary z = 0. To achieve this goal, a misfit
functional is introduced, the minimization of which
formulates the inverse problem as an optimization
task, typically solved with the aid of regularization
techniques.

(10)

a fixed distribution of the parameter k.
We define the variation of the functional [6, 16-
17]:

l
Ik + 8k) — J(k) = Zf (Zo, @) *u, (v, 0k + 8k) — iwopt - u(y, 03 k + 8Kk)) dy —
w -1

l
- (200,0) 10,000 = o u(y,0;10) dy =
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l
=D [ 20000 (1., 05k 4 880 = 1,0,0100) = o

. (u(y, 0; k + 6k) — u(y, 0; k))] X
X [Zo(y, @) - (u, (3, 0; k + k) + u,(y,0; k) — iwp
(uly, 0k + 8k) + u(y, 0;k))|dy

Let's introduce a substitution:
u(y,z;k + 6k) =1
u(y,z; k) =u
fi—u=adu

u=~0u+i

With this substitution, we arrive at the following representation:

l
2] 1200.0) 50,00 = i 5u(y, 001 x
X 2(Zo(y, ) 4, (7, 0) — i u(y, O)dy + O(I5ull)

Let us formulate the perturbed problem:

fiyy + iy, + (k + 8K)i = 0 (11)
a(=1,2) =1, 2) = g(2) (12)
i,(y,0) +y,ti(y,0) = I, (13)
i,(y,H) — yuti(y,H) = 0 (14)

Subtracting problem (1)—(4) from problem (11)—(14), we obtain the problem for du

Suyy + Su,, + kéu + Sku =0 (15)
ou(—=Lz)=6u(l,z) =0 (16)
§u, (y,0) +yo6u(y,0) = 0 (17)
Su,(y, H) —ypbu(y,H) = 0 (18)

Starting from (15), we take the identity equal to zero and, after integrating by parts, arrive at the following
expression:

I (H
O=Zf f [6uyy+6uzz+k-6u+6k-u]-v,b(y,z)dzdy=
= J_1Jo

H I ] !
:Z(f [6uy-¢|_l—5u-¢y|_l+f wyydudy] dy
— \Jo -1

l H H H
+j [Suz -1/J|0 —6u'1,bz|0 +f l/JZZ5udZ] dy +
-1 0

+f_llf0H(k-5u-¢+6k-u-¢)dzdy>=Z(f_llf:[lpyy+¢Zz+k.¢]5udzdy+

I H H
+f f 6k -y -udzdy + f [(Suy(l, z) Y, z) — du, (=1, 2) - P(-=L, Z)]dz —
-1Jo 0
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H
—f [6u(l,z) -y,(1,2z) — 6u(=L,2) - Y,(—1,z)|dz +
0

l

; j 6w, (v, H) - ¥y, H) — 6u, (3, 0) - (3, 0) — Suy, H) 1, (y, H)
-1
+ du(y,0) - ¢, (y,0)]dy) =

Based on (16), (17), (18), we obtain:

=Z<J:J;H[lpyy+1,bZZ+k-1p]8udzdy+f_llJ;H6k-1p-udzdy+

H
+ fo [6u, (L 2) - $(U, 2) — Suy (=1, 2) - p(~1, 2)]dz +

l
+ f l[(—wz(y. H) +yup(y, H))Su(y, H) + (¥,(,0) — o9 (y,0))du(y, 0)]dy).

Alternatively, the variation of the functional can be expressed directly as:

J(k + 8k) — J(k) = (8, Ix) =
l
Z f Z[Zo(y,w) ' 6uz(y' 0) - lwIJ- ' 5“(3’: 0) ' Z[Zo(y'w) ' uz(y' 0) - lwl’t ' u(y' O)]]dy

Accordingly, the adjoint problem can be formulated as follows

lpyy+lpzz+k'lp:0 (19)
lp(_ll Z) = ll}(ll Z) =0 (20)
Y, (v, H) +yup(y, H) = 0 21)
Y:(5,0) =y, 0) = 2(¥o - Zo(y, w) + ioop) X 22)
X (Zo(y, ) - u,(y,0) — iwp - u(y, 0))
This yields the following expression:
I H 1
0= [ [ ok-w-udzay+ [ 50 (5,0.0) - yop . 0)ay
— /170 -1
Accordingly, the gradient of the functional can be expressed in the following form:
J'(k) = 2 Y,z w)  uly, z; w) (23)
w

Here, Y (y, z; w) represents the solution of the
adjoint problem (19)—(22).

Algorithm for Solving the Inverse Problem
Based on the Landweber Method. The inverse
problem, in its numerical form, is formulated as an
optimization task, the goal of which is to minimize a

specific functional. The efficiency achieved and the
stability of convergence are directly related to the
choice of the optimization method[6,7,9,17].

Landweber Iterative Algorithm.

1. Initialization.

Choose an initial approximation for the unknown
coefficient, k(®;
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2. Solution of the direct problem.

Assuming that the current approximation k™ is
known, solve the discrete direct problem (1)—(4)
using a finite-difference scheme. In the interior
nodes, the Helmholtz equation is approximated as

Uipq,j — 2U5 + Ui j

hy
24
Wi jp1 = 2Uj 5+ Upjq K w =0 24)
+ h% + i,j ui,j =
subject to the boundary conditions
Ugj = up,; = 9(z) (25)
& +n)
2h, Yo
2 1 (26)
" Ui +h_z'ui,1 _Z_hz.ui’z =Tp
1 2 4 ( 3 )
2h, UiN,-2 h, UinN,-1 2h, )41 27)

“Uin, =0

3. Evaluation of the misfit functional.

Compute the value of the functional J (k(”))
according to formula (10);

4. Solution of the adjoint problem.

If the functional value is not sufficiently small,
solve the adjoint problem (19)—(22). The discrete
adjoint equation in the interior of the domain has the
form

Yivr,j — 20 +iq

h2 *
Pijrs = 200 + ¥ (29)
Cie1 — 20 i1
+ L] hé} 1] +kl’]¢111=0
with boundary conditions
Yos = ¥y =0 (29)
1 2
2h, “Yin,—2 — n, “Yin,-1t+
(30)

3
(g ) v, =0

Z

3 2 1
_(th +V0) “Yio +h_z'l/1i,1 —Z_hZ'l/’i,z 31
=0

where
0; = 0(y;) = 2(vo - Zo(y, ) + iwp) -
(2035, @) - w235, 0) — o - u(y;, 0))

5. Gradient computation.
Compute the gradient of the functional

T = 1h150) -y ()

6. Update step.
Update the coefficient using the Landweber
iteration:

kD = M — g g7

and return to step 2. Where a € (0, ||A]|72) is the
step-size (descent) parameter [16].

7. Stopping criterion.

The iterative process is terminated either when
the functional value stabilizes or, in the presence of
noisy data, when a discrepancy-type stopping rule is
satisfied J (k(")) < &2 In particular, an early
stopping criterion is used, which acts as an implicit
regularization mechanism for the ill-posed inverse
problem [18].

Here, the Landweber method serves not only as
an optimization technique but also as an iterative
regularization method, where stability with respect to
data perturbations is achieved by an appropriate
choice of the step size @ and by early termination of
the iterations.

Results and Discussion

To assess the performance of the proposed
numerical algorithm, we consider a two-dimensional
conductivity model o(y,z) consisting of a
background distribution and a localized Gaussian
anomaly. The background is defined by a function
oV (z) that depends only on depth z, whereas the
anomaly is introduced in the central part of the
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computational domain and is localized with respect
to both the y and z coordinates.

In the course of numerical simulation, a complete
two-dimensional system of linear algebraic equations
(SLAE) was constructed, arising from the finite-
difference approximation of the Helmholtz equation
with the variable complex coefficient k(y,z) =
iwuo(y, z). The resulting system is large-scale and
sparse, which renders the use of classical direct
solvers inefficient. Therefore, to obtain the numerical
solution, a sparse-matrix method was employed,
ensuring a significant reduction in computational cost
and improved stability of the algorithm when
modeling realistic geoelectrical media.

Parameters of the Numerical Experiment. Within
the framework of the numerical experiment, a two-
dimensional model was considered that includes a
Gaussian conductivity anomaly localized in a
bounded region. The geometric parameters of the
computational domain are specified as follows: the
half-width along the horizontal axis is [ = 1, and the
depth of the domain is H = 1. The simulation
frequency range was chosen as f € [1,10] with a
discretization step of 0.2, while the angular frequency
is defined by the relation w = 2nf.

To prescribe the anomalous conductivity, a
Gaussian function is employed:

529 = 01+ ¢~(010974 (0802

The air conductivity in the model is set to gy =
0.01, whereas at the lower boundary of the
computational domain the value oy = 0.1 is used.
The magnetic permeability of the medium is assumed
to be constant throughout the entire domain and is
taken as u = 0.08m.

In Figure 2a, the real part of the field,
a)Re(u(y,z)), exhibits smooth spatial variations:
the values reach their maximum in the central part of
the domain and gradually decrease toward the
boundaries. This distribution reflects the influence of
the central conductive anomaly and the symmetry of
the geoelectrical structure with respect to the y-axis.

In Figure 2b, the real part of the impedance,
b)Re(Zy(y, w)), shows a pronounced maximum in
the central zone (near y = 0) and decreases toward
the edges (y = £1). As the frequency increases, an
overall reduction of Re(Zy(y,w)), is observed,
which corresponds to the shallower penetration depth
of the electromagnetic field and the reduced
contribution of deep conductive structures.

Both presented quantities — a)Re(u(y,z)), and
Re(Zy(y, a))) — behave consistently and serve as the
basis for further impedance analysis and
reconstruction of the medium structure. The
imaginary parts of the field and impedance are not
considered in this section, since the focus is placed
on amplitude (energy) characteristics; their analysis
is beyond the scope of the current illustration.
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Figure 2 — Numerical solution of the direct problem with the specified model parameters:
a) distribution of the electromagnetic field u(y, z); b) impedance response
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Figure 3 presents the results of the numerical
solution of the two-dimensional inverse
magnetotelluric sounding problem obtained using the
Landweber method. The exact conductivity
distribution a,, (v, z) (Figure 3a) is compared with
the approximate solution o, (y,z) (Figure 3b),
computed after a finite number of iterations.

The exact distribution is characterized by a
smooth and symmetric structure with a maximum at

the center and gradual decay toward the boundaries
of the domain. The reconstructed solution generally
reproduces the shape of the original model: the
central maximum coincides in position, and the main
contours of the anomaly are preserved. The largest
discrepancies between the exact and approximate
solutions are observed in the peripheral regions,
which can be explained by the higher sensitivity to
data errors and iterative inaccuracies.
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Figure 3 — Graphical comparison of the exact and reconstructed conductivity

Figure 4 illustrates the results of the numerical
solution of the inverse magnetotelluric sounding
problem obtained with the Landweber method.

Shown are the convergence curves of the functional
J(k), which exhibit a monotonic decrease
throughout the iterative process.

35
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J(k_n)

15

n_iteration

|
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Figure 4 — Graph of the functional decrease using the Landweber method
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As a test case, an exponential function was
employed, whose reconstruction is traditionally
considered challenging in inverse problems. Future
work will focus on applying the methodology to real
field data and on extending the approach to more
complex types of anomalies. The present study is
primarily aimed at demonstrating the methodological
framework for solving inverse problems in
magnetotelluric sounding.

It should be noted that in the present study the
numerical experiments were performed using
synthetic data without the addition of artificial
noise. Even in this case, the results demonstrate
that the Landweber method does not provide a
complete reconstruction of the conductivity
coefficient and leads to a smoothing of the
solution, especially in the peripheral regions of the
computational domain. Such behavior is typical for
gradient-based iterative methods when solving ill-
posed coefficient inverse problems and reflects
their regularizing nature.

In this regard, the additional introduction of noise
into the input data is not fundamentally necessary to
reveal the limitations of the method, since the main
effects related to stability and incomplete
reconstruction already appear for idealized data. The
present work is focused on demonstrating the
methodological framework for solving the two-
dimensional coefficient inverse problem of
magnetotelluric sounding and on analyzing the
behavior of the Landweber algorithm. A more
detailed investigation of the influence of
measurement noise, regularization parameters, and
stopping criteria is planned for future studies.

Conclusion

This study addressed the two-dimensional
inverse problem of magnetotelluric sounding. The
work is of a review-applied nature and was aimed at
developing a direct numerical model of the

electromagnetic response of a geoelectrical medium.
The modeling framework is based on the Helmholtz
equation with a complex coefficient, in which
conductivity varies both with depth and along the
transverse coordinate.

A synthetic model was designed for the
numerical experiments, consisting of a smooth
background conductivity and a localized anomaly.
Simulations of the electromagnetic field and surface
impedance revealed the strong sensitivity of the
response to subsurface heterogeneities. The observed
field symmetry and the occurrence of local maxima
in the impedance distribution validate the correctness
of the implemented algorithm.

The inverse problem of reconstructing the
conductivity distribution from synthetic data was also
examined. The numerical results demonstrated that
even with limited information, a high level of
reconstruction accuracy can be achieved. The misfit
functional attained its minimum after a relatively
small number of iterations, and the approximate
solution closely matched the original model.

Overall, the findings confirm that the proposed
numerical scheme and inversion algorithm are
effective both for direct modeling and for the stable
solution of inverse magnetotelluric sounding
problems, highlighting their potential as practical
tools for geophysical interpretation. Quantitative
error analysis and comparison with alternative
inversion methods will be the subject of future work.
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