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Numerical solution of the inverse problem  
of magnetotelluric sounding

Abstract. This study focuses on the coefficient inverse problem arising in magnetotelluric (MT) sounding, 
which plays a crucial role in geophysical exploration and subsurface characterization. The main objective 
is twofold: first, to construct a reliable forward numerical model based on the Helmholtz equation 
with a complex-valued conductivity coefficient, and second, to develop a stable inversion procedure 
for reconstructing the conductivity distribution from boundary measurements. The forward problem is 
discretized using a finite-difference approximation, ensuring numerical stability and accuracy for both the 
direct and adjoint formulations. To address the ill-posed nature of the inverse problem, a misfit functional 
is introduced, measuring the discrepancy between simulated and observed boundary data. This functional 
is minimized using the iterative Landweber method, which provides a simple yet robust tool for stabilizing 
reconstructions. Numerical experiments are carried out for a synthetic conductivity model consisting of a 
smooth background medium with an embedded localized anomaly. The obtained results demonstrate the 
ability of the proposed method to recover key structural features of the anomaly. The presented framework 
offers a promising foundation for the development of practical inversion algorithms applicable to real 
geophysical MT data.
Keywords: Helmholtz equation, magnetotelluric sounding, inverse problem, Landweber method, numerical 
solution.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Introduction 
 
A key direction in the study of magnetotelluric 

processes is the construction of mathematical models 
that reliably describe the propagation of the 
electromagnetic field in a conducting medium. In [1], 
a generalized methodological framework is presen-
ted, where the formulation of forward and inverse 
problems for Maxwell’s equations is discussed, and 
the specific features of their solutions under various 
physical and geometrical parameters are analyzed. 
Significant attention is devoted to the classification 
of models – from one-dimensional to multilayered 
and anisotropic structures – which plays an essential 
role in the selection of appropriate numerical 
approaches. Furthermore, that study highlights the 
relationship between the full system of Maxwell’s 
equations and simplified scalar formulations, such as 

the Helmholtz equation, thereby opening the 
possibility of employing advanced numerical 
methods commonly used for elliptic problems in the 
context of magnetotelluric sounding. 

The study of inverse problems in 
magnetotellurics has a long history, originating from 
the seminal works [2–3] that laid the foundations of 
the theoretical description of the method. Tikhonov 
proposed the mathematical formulation of the 
problem of reconstructing the electrophysical 
properties of the deep layers of the Earth’s crust, 
while Cagniard developed the classical theory of 
magnetotelluric sounding. These pioneering 
contributions set the direction for subsequent studies 
devoted to the development of inversion techniques 
and the interpretation of geoelectrical data. 

A widely adopted approach to solving inverse 
problems in magnetotellurics is the use of 
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variational–regularization methods, where the 
problem is reformulated as the minimization of a 
functional with a regularization term. In this 
direction, particular attention should be paid to the 
studies [4], where the coefficient inverse problem for 
the Helmholtz equation is considered. The author 
emphasizes the importance of selecting appropriate 
regularization procedures to ensure the stability of 
the solution. Similar ideas are further developed in 
[5], which addresses an identification problem 
related to integrodifferential Maxwell’s equations. 
Further works [6–9] demonstrate the 
interdisciplinary significance of inverse problem 
methods and their application to various areas of 
mathematical physics. 

A significant contribution has also been made in 
the field of rock conductivity analysis. In [10], a 
numerical method is proposed for determining the 
dielectric permittivity from the modulus of the 
electric field intensity vector. Such studies enhance 
the interpretation of MT results and improve the 
physical justification of constructed models. The 
work [11] provides a review of laboratory 
measurements of rock conductivity and their 
interpretation in the context of magnetotelluric data. 
The author discusses the effects of temperature, 
pressure, mineral composition, and the presence of 
fluids on the electrophysical parameters, as well as 
the consistency between laboratory curves and the 
results of geophysical inversions. The obtained 
relationships help refine the interpretation of MT 
results and strengthen the physical validity of 
geoelectrical models. 

Another important direction is the development 
of locally iterative methods, where inversion is 
carried out step by step or for separate regions of the 
medium. In [12], a quasi-one-dimensional approach 
is proposed, based on approximating the 
multidimensional problem with a series of one-
dimensional models, each refined at a separate step 
of the iterative process. This method reduces 
computational costs and improves stability to noise, 
particularly in cases with strong geoelectrical 
contrasts. A similar logic is implemented in [13], 
where a stepwise algorithm is developed using the 
integral formulation of the forward problem 
combined with sequential parameter correction. Such 
discretization ensures numerical stability and allows 
adaptation to local features of the subsurface 
structure, which is especially important for strongly 
stratified models. 

Modern studies increasingly employ machine 
learning techniques and physics-informed neural 
network algorithms. In [14], a deep learning 
inversion method incorporating physical equations is 
proposed for magnetotelluric data. In [15], a neural-
network-based forward modeling algorithm is 
developed and applied to the inversion problem. 
These approaches significantly accelerate 
computations and provide robustness in processing 
large-scale datasets. 

The present work is devoted to the numerical 
solution of the coefficient inverse problem of 
magnetotelluric sounding. For the numerical 
simulations, second-order finite-difference schemes 
are employed, while the inverse problem is 
formulated as an optimization problem and solved 
using the Landweber gradient method. The novelty 
of the present study lies in proposing a full coefficient 
formulation of the two-dimensional inverse problem 
of magnetotelluric sounding for the Helmholtz 
equation with a complex-valued conductivity 
𝜎𝜎𝜎𝜎(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧), which makes it possible to consistently 
describe both vertical and lateral heterogeneities of 
the geoelectrical medium, going beyond the classical 
Tikhonov–Cagniard model. Within this formulation, 
the variation of the misfit functional is derived 
rigorously, and the corresponding adjoint problem 
adapted to complex coefficients is constructed, which 
has not been presented in existing MT inversion 
studies. Furthermore, the Landweber method is 
employed directly to solve the two-dimensional 
coefficient inverse problem, providing a stable 
alternative to commonly used magnetotelluric 
inversion approaches such as Gauss–Newton–type 
methods. The proposed methodology is demonstrated 
through an original numerical experiment involving 
a two-dimensional Gaussian anomaly and the 
computation of the complex impedance, confirming 
its effectiveness. 

 
Materials and Methods  
 
Problem Formulation. This article investigates 

the two-dimensional inverse problem of 
magnetotelluric sounding under E-polarization of the 
electromagnetic field. The primary objective is to 
reconstruct the spatial distribution of electrical 
conductivity based on the known impedance values 
measured at the Earth’s surface. The direct problem 
is formulated through the Helmholtz equation with a 
complex coefficient and the corresponding boundary 
conditions in a rectangular area (Figure 1). The 
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solution of the inverse problem is carried out using a 
gradient-based method, formulated as the 
minimization of a functional. 

We now turn to the mathematical formulation of 
the two-dimensional inverse magnetotelluric (MT) 
sounding problem. 

 
 

 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)𝑢𝑢𝑢𝑢 = 0, −𝑙𝑙𝑙𝑙 < 𝑦𝑦𝑦𝑦 < 𝑙𝑙𝑙𝑙, 0 < 𝑧𝑧𝑧𝑧 < 𝐻𝐻𝐻𝐻, (1) 
 𝑢𝑢𝑢𝑢(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) = 𝑢𝑢𝑢𝑢(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) = 𝑔𝑔𝑔𝑔(𝑧𝑧𝑧𝑧), 0 ≤ 𝑧𝑧𝑧𝑧 ≤ 𝐻𝐻𝐻𝐻, (2) 
 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) + 𝛾𝛾𝛾𝛾0𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0) = 𝛤𝛤𝛤𝛤0, −𝑙𝑙𝑙𝑙 < 𝑦𝑦𝑦𝑦 < 𝑙𝑙𝑙𝑙, (3) 
 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) − 𝛾𝛾𝛾𝛾𝐻𝐻𝐻𝐻𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) = 0, −𝑙𝑙𝑙𝑙 < 𝑦𝑦𝑦𝑦 < 𝑙𝑙𝑙𝑙. (4) 

 
where 𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧). 
 

 
Figure 1 – Domain for the Helmholtz equation 

 
 
Generalized solution of the two-dimensional MT 

sounding problem. In problems where the 
coefficients depend on several variables and complex 
parameters are involved, the solution may not 
necessarily possess classical second derivatives. In 
such cases, the concept of a generalized solution in 
Sobolev spaces is employed [16-17]. 

Definition 1. A function 𝑢𝑢𝑢𝑢 ∈ 𝐿𝐿𝐿𝐿2(𝛺𝛺𝛺𝛺) is called a 
generalized solution of the direct problem (1)–(4) if 

for any test function 𝜑𝜑𝜑𝜑 ∈ 𝐻𝐻𝐻𝐻2(𝛺𝛺𝛺𝛺) satisfying the 
following conditions:  

 
 𝜑𝜑𝜑𝜑(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) = 𝜑𝜑𝜑𝜑(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) = 0,  (5) 
 𝜑𝜑𝜑𝜑𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) − 𝛾𝛾𝛾𝛾𝐻𝐻𝐻𝐻𝜑𝜑𝜑𝜑(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) = 0,  (6) 
 𝜑𝜑𝜑𝜑𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) + 𝛾𝛾𝛾𝛾0𝜑𝜑𝜑𝜑(𝑦𝑦𝑦𝑦, 0) = 0,  (7) 

 
the following integral identity holds 

 
 

 
� � 𝑢𝑢𝑢𝑢�𝜑𝜑𝜑𝜑𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜑𝜑𝜑𝜑𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑘𝑘𝑘𝑘𝜑𝜑𝜑𝜑�𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝐻𝐻𝐻𝐻

0
𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙
− 𝛤𝛤𝛤𝛤0 � 𝜑𝜑𝜑𝜑(𝑦𝑦𝑦𝑦, 0)𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙
+  

 
+� (𝜑𝜑𝜑𝜑(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) − 𝜑𝜑𝜑𝜑(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧))𝑔𝑔𝑔𝑔(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

𝐻𝐻𝐻𝐻

0
= 0 (8) 
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By means of Theorem 1, the existence of a 
generalized solution to the two-dimensional problem 
(1)–(4) is established, and the corresponding a priori 
estimate is derived. Similar statements can be found 
in studies [16-17]. 

Theorem 1. Let 𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔2(0,𝐻𝐻𝐻𝐻),𝛤𝛤𝛤𝛤0 ∈ 𝐶𝐶𝐶𝐶, the 
coefficient 𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) ∈𝐿𝐿𝐿𝐿 ∞(𝛺𝛺𝛺𝛺), and the parameters 
𝛾𝛾𝛾𝛾0, 𝛾𝛾𝛾𝛾𝐻𝐻𝐻𝐻 ∈ 𝐶𝐶𝐶𝐶. Then there exists a unique generalized 
solution u ∈ L2(Ω), satisfying the weak formulation 
(8), and this solution satisfies the following a priori 
estimate:  

 
‖𝑢𝑢𝑢𝑢‖𝐿𝐿𝐿𝐿2(Ω) ≤ 𝐶𝐶𝐶𝐶𝐶‖𝑔𝑔𝑔𝑔‖𝐿𝐿𝐿𝐿2(0,𝐻𝐻𝐻𝐻) + |Γ0|�, 

 
where the constant 𝐶𝐶𝐶𝐶 > 0 depends only on the 
dimensions of the domain 𝛺𝛺𝛺𝛺 = (−𝑙𝑙𝑙𝑙: 𝑙𝑙𝑙𝑙) × (0;𝐻𝐻𝐻𝐻) norm 
‖𝑘𝑘𝑘𝑘‖𝐿𝐿𝐿𝐿∞(𝛺𝛺𝛺𝛺), and the coefficients 𝛾𝛾𝛾𝛾0, 𝛾𝛾𝛾𝛾𝐻𝐻𝐻𝐻. 

 
Formulation of the direct and inverse 

problems.  
In the direct problem (1)–(4), the objective is to 

determine the function 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) for given 𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) and 
boundary data 𝑔𝑔𝑔𝑔(𝑧𝑧𝑧𝑧). In the inverse problem, the goal 
is to reconstruct the coefficient 𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) using 
additional observational information. 

 
 

𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖
𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0)
𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0). (9) 

 
The direct problem, defined by equations (1)–(4), 

describes the distribution of the complex electric 

field 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) in a geoelectrical medium for a fixed 
parameter 𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) associated with electrical 
conductivity. It is well known that 𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) is directly 
determined by the conductivity distribution, and its 
recovery relies on experimentally obtained data. 

In magnetotelluric sounding, the primary 
observable quantity is the impedance, which 
represents the ratio of the electric and magnetic field 
components. In the two-dimensional model with E-
polarization, the impedance takes the form (9) and 
serves as the only boundary characteristic directly 
related to the conductivity coefficient 𝜎𝜎𝜎𝜎(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧). Since 
the impedance contains essential information about 
both vertical and lateral variations in electrical 
conductivity and is widely used in the interpretation 
of MT data, minimizing the misfit between the 
observed impedance and the impedance 
reconstructed by the model is a physically justified 
and commonly accepted approach. This choice of the 
functional ensures proper agreement between the 
model and the physically measurable quantities and 
makes the inversion problem consistent with classical 
MT interpretation practices. 

The main objective of the inverse problem is to 
reconstruct the parameter 𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) from the known 
impedance values 𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) measured at the 
boundary 𝑧𝑧𝑧𝑧 = 0. To achieve this goal, a misfit 
functional is introduced, the minimization of which 
formulates the inverse problem as an optimization 
task, typically solved with the aid of regularization 
techniques.

 
 

 𝒥𝒥𝒥𝒥(𝑘𝑘𝑘𝑘) = � � �𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) ∙ 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0; 𝑘𝑘𝑘𝑘) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0; 𝑘𝑘𝑘𝑘)�2𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙

𝜔𝜔𝜔𝜔𝑁𝑁𝑁𝑁

𝜔𝜔𝜔𝜔=𝜔𝜔𝜔𝜔0

 (10) 

 
 
where 𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) denotes the impedance computed 
from the observational data, and 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧; 𝑘𝑘𝑘𝑘) 
corresponds to the solution of the direct problem for  
 

a fixed distribution of the parameter 𝑘𝑘𝑘𝑘. 
We define the variation of the functional [6, 16-

17]:

 

𝒥𝒥𝒥𝒥(𝑘𝑘𝑘𝑘 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘) − 𝒥𝒥𝒥𝒥(𝑘𝑘𝑘𝑘) = �� �𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) ∙ 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0; 𝑘𝑘𝑘𝑘 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0; 𝑘𝑘𝑘𝑘 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘)�2𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔

− 

 
−�� �𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) ∙ 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0; 𝑘𝑘𝑘𝑘) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0;𝑘𝑘𝑘𝑘)�2𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔

= 
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= �� �𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) ∙ �𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0;𝑘𝑘𝑘𝑘 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘) − 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0; 𝑘𝑘𝑘𝑘)� − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔
∙ �𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0; 𝑘𝑘𝑘𝑘 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘) − 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0;𝑘𝑘𝑘𝑘)�� × 

 × �𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) ∙ �𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0; 𝑘𝑘𝑘𝑘 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘) + 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0; 𝑘𝑘𝑘𝑘)� − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
∙ �𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0; 𝑘𝑘𝑘𝑘 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘) + 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0;𝑘𝑘𝑘𝑘)��𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦 

 
Let's introduce a substitution: 
 

𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧; 𝑘𝑘𝑘𝑘 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘) = 𝑢𝑢𝑢𝑢�  
𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧; 𝑘𝑘𝑘𝑘) = 𝑢𝑢𝑢𝑢 
𝑢𝑢𝑢𝑢� − 𝑢𝑢𝑢𝑢 = 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 
𝑢𝑢𝑢𝑢 = 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 + 𝑢𝑢𝑢𝑢�  

 
With this substitution, we arrive at the following representation: 
 

 
�� [𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) ∙ 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0)]

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔

× 

 × 2[𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) ∙ 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0)]𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦 + 𝑂𝑂𝑂𝑂(‖𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢‖) 
 
Let us formulate the perturbed problem: 
 

 𝑢𝑢𝑢𝑢�𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑢𝑢𝑢𝑢�𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + (𝑘𝑘𝑘𝑘 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘)𝑢𝑢𝑢𝑢� = 0 (11) 
 𝑢𝑢𝑢𝑢�(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) = 𝑢𝑢𝑢𝑢�(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) = 𝑔𝑔𝑔𝑔(𝑧𝑧𝑧𝑧) (12) 
 𝑢𝑢𝑢𝑢�𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) + 𝛾𝛾𝛾𝛾0𝑢𝑢𝑢𝑢�(𝑦𝑦𝑦𝑦, 0) = 𝛤𝛤𝛤𝛤0 (13) 
 𝑢𝑢𝑢𝑢�𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) − 𝛾𝛾𝛾𝛾𝐻𝐻𝐻𝐻𝑢𝑢𝑢𝑢�(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) = 0 (14) 

 
Subtracting problem (1)–(4) from problem (11)–(14), we obtain the problem for 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 
 

 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑘𝑘𝑘𝑘𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 0 (15) 
 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) = 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) = 0 (16) 
 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) + 𝛾𝛾𝛾𝛾0𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0) = 0 (17) 
 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) − 𝛾𝛾𝛾𝛾𝐻𝐻𝐻𝐻𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) = 0 (18) 

 
Starting from (15), we take the identity equal to zero and, after integrating by parts, arrive at the following 

expression: 
 

 
0 = �� � �𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑘𝑘𝑘𝑘 ∙ 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘 ∙ 𝑢𝑢𝑢𝑢� ∙ 𝜓𝜓𝜓𝜓(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

𝐻𝐻𝐻𝐻

0
𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔

= 

 
= ��� �𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦 ∙ 𝜓𝜓𝜓𝜓| 𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙 − 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 ∙ 𝜓𝜓𝜓𝜓𝑦𝑦𝑦𝑦�
𝑙𝑙𝑙𝑙
−𝑙𝑙𝑙𝑙 + � 𝜓𝜓𝜓𝜓𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙
� 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝐻𝐻𝐻𝐻

0𝜔𝜔𝜔𝜔

+ � �𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧 ∙ 𝜓𝜓𝜓𝜓|𝐻𝐻𝐻𝐻
0 − 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 ∙ 𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧|𝐻𝐻𝐻𝐻

0 + � 𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝐻𝐻𝐻𝐻

0
� 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙
+ 

 
+� � (𝑘𝑘𝑘𝑘 ∙ 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢 ∙ 𝜓𝜓𝜓𝜓 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘 ∙ 𝑢𝑢𝑢𝑢 ∙ 𝜓𝜓𝜓𝜓)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

𝐻𝐻𝐻𝐻

0
𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦�

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙
= ��� � �𝜓𝜓𝜓𝜓𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑘𝑘𝑘𝑘 ∙ 𝜓𝜓𝜓𝜓�𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝐻𝐻𝐻𝐻

0
𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔

+ 

 
+� � 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘 ∙ 𝜓𝜓𝜓𝜓 ∙ 𝑢𝑢𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐻𝐻𝐻𝐻

0
𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙
+ � �𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) ∙ 𝜓𝜓𝜓𝜓(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) − 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) ∙ 𝜓𝜓𝜓𝜓(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧)�𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

𝐻𝐻𝐻𝐻

0
− 



69S.E. Kasenov et al.

 
−� [𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) ∙ 𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) − 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) ∙ 𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧)]𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

𝐻𝐻𝐻𝐻

0
+ 

 
+� [𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) ∙ 𝜓𝜓𝜓𝜓(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) − 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) ∙ 𝜓𝜓𝜓𝜓(𝑦𝑦𝑦𝑦, 0) − 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) ∙ 𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻)

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙
+ 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0) ∙ 𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0)]𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦) = 

 
Based on (16), (17), (18), we obtain: 
 
 

 
= ��� � �𝜓𝜓𝜓𝜓𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑘𝑘𝑘𝑘 ∙ 𝜓𝜓𝜓𝜓�𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝐻𝐻𝐻𝐻

0
𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔

+ � � 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘 ∙ 𝜓𝜓𝜓𝜓 ∙ 𝑢𝑢𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐻𝐻𝐻𝐻

0
𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙
+ 

 
+� �𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) ∙ 𝜓𝜓𝜓𝜓(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) − 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) ∙ 𝜓𝜓𝜓𝜓(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧)�𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

𝐻𝐻𝐻𝐻

0
+ 

 
+� ��−𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) + 𝛾𝛾𝛾𝛾𝐻𝐻𝐻𝐻𝜓𝜓𝜓𝜓(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻)�𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) + �𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) − 𝛾𝛾𝛾𝛾0𝜓𝜓𝜓𝜓(𝑦𝑦𝑦𝑦, 0)�𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0)�𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦�

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙
. 

 
Alternatively, the variation of the functional can be expressed directly as: 
 

 𝒥𝒥𝒥𝒥(𝑘𝑘𝑘𝑘 + 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘) − 𝒥𝒥𝒥𝒥(𝑘𝑘𝑘𝑘) = 〈𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘 ,𝒥𝒥𝒥𝒥𝑘𝑘𝑘𝑘′ 〉 = 
 

�� �𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) ∙ 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0) ∙ 2[𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖) ∙ 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0)]�𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔

. 

 
Accordingly, the adjoint problem can be formulated as follows 
 

 𝜓𝜓𝜓𝜓𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑘𝑘𝑘𝑘 ∙ 𝜓𝜓𝜓𝜓 = 0  (19) 
 𝜓𝜓𝜓𝜓(−𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) = 𝜓𝜓𝜓𝜓(𝑙𝑙𝑙𝑙, 𝑧𝑧𝑧𝑧) = 0  (20) 
 𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) + 𝛾𝛾𝛾𝛾𝐻𝐻𝐻𝐻𝜓𝜓𝜓𝜓(𝑦𝑦𝑦𝑦,𝐻𝐻𝐻𝐻) = 0  (21) 
 𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) − 𝛾𝛾𝛾𝛾0𝜓𝜓𝜓𝜓(𝑦𝑦𝑦𝑦, 0) = 2(𝛾𝛾𝛾𝛾0 ∙ 𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,ω) + 𝑖𝑖𝑖𝑖ω𝑖𝑖𝑖𝑖) × 

× �𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,ω) ∙ 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) − 𝑖𝑖𝑖𝑖ω𝑖𝑖𝑖𝑖 ∙ 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0)� (22) 

 
This yields the following expression: 
 

 
0 = �� � 𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘 ∙ 𝜓𝜓𝜓𝜓 ∙ 𝑢𝑢𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐻𝐻𝐻𝐻

0
𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦

𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔

+ � 𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 0) ∙ �𝜓𝜓𝜓𝜓𝑧𝑧𝑧𝑧(𝑦𝑦𝑦𝑦, 0) − 𝛾𝛾𝛾𝛾0𝜓𝜓𝜓𝜓(𝑦𝑦𝑦𝑦, 0)�𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑙𝑙𝑙𝑙

−𝑙𝑙𝑙𝑙
 

 
Accordingly, the gradient of the functional can be expressed in the following form: 
 

 𝒥𝒥𝒥𝒥′(𝑘𝑘𝑘𝑘) = �𝜓𝜓𝜓𝜓(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧;ω) ∙ 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧;ω)
𝜔𝜔𝜔𝜔

 (23) 

 
Here, 𝜓𝜓𝜓𝜓(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧;ω) represents the solution of the 

adjoint problem (19)–(22). 
 
Algorithm for Solving the Inverse Problem 

Based on the Landweber Method. The inverse 
problem, in its numerical form, is formulated as an 
optimization task, the goal of which is to minimize a 

specific functional. The efficiency achieved and the 
stability of convergence are directly related to the 
choice of the optimization method[6,7,9,17]. 

Landweber Iterative Algorithm. 
1. Initialization. 
Choose an initial approximation for the unknown 

coefficient, 𝑘𝑘𝑘𝑘(0); 
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2. Solution of the direct problem. 
Assuming that the current approximation 𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛) is 

known, solve the discrete direct problem (1)–(4) 
using a finite-difference scheme. In the interior 
nodes, the Helmholtz equation is approximated as  

 
𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 2𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

ℎ𝑦𝑦𝑦𝑦2
+ 

+
𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗 − 2𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

ℎ𝑧𝑧𝑧𝑧2
+ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∙ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 0 

(24) 

 
subject to the boundary conditions 
 

 

𝑢𝑢𝑢𝑢0,𝑗𝑗𝑗𝑗 = 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦,𝑗𝑗𝑗𝑗 = 𝑔𝑔𝑔𝑔(𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖) (25) 
 

�
−3
2ℎ𝑧𝑧𝑧𝑧

+ 𝛾𝛾𝛾𝛾0� ∙ 

∙ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,0 +
2
ℎ𝑧𝑧𝑧𝑧
∙ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,1 −

1
2ℎ𝑧𝑧𝑧𝑧

∙ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,2 = Γ0 

 

(26) 

1
2ℎ𝑧𝑧𝑧𝑧

∙ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧−2 −
2
ℎ𝑧𝑧𝑧𝑧
∙ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧−1 + �

3
2ℎ𝑧𝑧𝑧𝑧

− 𝛾𝛾𝛾𝛾𝐻𝐻𝐻𝐻�

∙ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧 = 0 
(27) 

 
3. Evaluation of the misfit functional. 
Compute the value of the functional 𝒥𝒥𝒥𝒥𝒥𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)� 

according to formula (10); 
4. Solution of the adjoint problem. 
If the functional value is not sufficiently small, 

solve the adjoint problem (19)–(22). The discrete 
adjoint equation in the interior of the domain has the 
form  

 
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 2𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

ℎ𝑦𝑦𝑦𝑦2
+ 

+
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗 − 2𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

ℎ𝑧𝑧𝑧𝑧2
+ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∙ 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 0 

(28) 

 
with boundary conditions 
 

 

𝜓𝜓𝜓𝜓0,𝑗𝑗𝑗𝑗 = 𝜓𝜓𝜓𝜓𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦,𝑗𝑗𝑗𝑗 = 0 
 

(29) 

1
2ℎ𝑧𝑧𝑧𝑧

∙ 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧−2 −
2
ℎ𝑧𝑧𝑧𝑧
∙ 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧−1 + 

+ �
3

2ℎ𝑧𝑧𝑧𝑧
+ 𝛾𝛾𝛾𝛾𝐻𝐻𝐻𝐻� ∙ 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧 = 0 

 

(30) 

−�
3

2ℎ𝑧𝑧𝑧𝑧
+ 𝛾𝛾𝛾𝛾0� ∙ 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,0 +

2
ℎ𝑧𝑧𝑧𝑧
∙ 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,1 −

1
2ℎ𝑧𝑧𝑧𝑧

∙ 𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,2
= 𝜃𝜃𝜃𝜃𝑗𝑗𝑗𝑗 

(31) 

where 
 

𝜃𝜃𝜃𝜃𝑗𝑗𝑗𝑗 = 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑗𝑗𝑗𝑗� = 2�𝛾𝛾𝛾𝛾0 ∙ 𝑍𝑍𝑍𝑍0�𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 ,𝑖𝑖𝑖𝑖� + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 
 

∙ �𝑍𝑍𝑍𝑍0�𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 ,𝑖𝑖𝑖𝑖� ∙ 𝑢𝑢𝑢𝑢𝑧𝑧𝑧𝑧�𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 0� − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑢𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 0�� 
 
5. Gradient computation. 
Compute the gradient of the functional 
 

𝒥𝒥𝒥𝒥′𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛) = �𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(ω) ∙ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗(ω)
𝜔𝜔𝜔𝜔

 

 
6. Update step. 
Update the coefficient using the Landweber 

iteration: 
 

𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛) − 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼′𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛) 
 
and return to step 2. Where 𝛼𝛼𝛼𝛼 𝛼 (0, ‖𝐴𝐴𝐴𝐴‖−2) is the 
step-size (descent) parameter [16]. 

 
7. Stopping criterion. 
The iterative process is terminated either when 

the functional value stabilizes or, in the presence of 
noisy data, when a discrepancy-type stopping rule is 
satisfied 𝒥𝒥𝒥𝒥𝒥𝑘𝑘𝑘𝑘(𝑛𝑛𝑛𝑛)� < 𝜀𝜀𝜀𝜀2. In particular, an early 
stopping criterion is used, which acts as an implicit 
regularization mechanism for the ill-posed inverse 
problem [18]. 

Here, the Landweber method serves not only as 
an optimization technique but also as an iterative 
regularization method, where stability with respect to 
data perturbations is achieved by an appropriate 
choice of the step size 𝛼𝛼𝛼𝛼 and by early termination of 
the iterations. 

 
Results and Discussion 
 
To assess the performance of the proposed 

numerical algorithm, we consider a two-dimensional 
conductivity model 𝜎𝜎𝜎𝜎(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) consisting of a 
background distribution and a localized Gaussian 
anomaly. The background is defined by a function 
𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁(𝑧𝑧𝑧𝑧) that depends only on depth 𝑧𝑧𝑧𝑧, whereas the 
anomaly is introduced in the central part of the  
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computational domain and is localized with respect 
to both the 𝑦𝑦𝑦𝑦 and 𝑧𝑧𝑧𝑧 coordinates. 

In the course of numerical simulation, a complete 
two-dimensional system of linear algebraic equations 
(SLAE) was constructed, arising from the finite-
difference approximation of the Helmholtz equation 
with the variable complex coefficient 𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) =
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧). The resulting system is large-scale and 
sparse, which renders the use of classical direct 
solvers inefficient. Therefore, to obtain the numerical 
solution, a sparse-matrix method was employed, 
ensuring a significant reduction in computational cost 
and improved stability of the algorithm when 
modeling realistic geoelectrical media. 

Parameters of the Numerical Experiment. Within 
the framework of the numerical experiment, a two-
dimensional model was considered that includes a 
Gaussian conductivity anomaly localized in a 
bounded region. The geometric parameters of the 
computational domain are specified as follows: the 
half-width along the horizontal axis is 𝑙𝑙𝑙𝑙 = 1, and the 
depth of the domain is 𝐻𝐻𝐻𝐻 = 1. The simulation 
frequency range was chosen as 𝑓𝑓𝑓𝑓 ∈ [1,10] with a 
discretization step of 0.2, while the angular frequency 
is defined by the relation 𝑖𝑖𝑖𝑖 = 2𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓. 

To prescribe the anomalous conductivity, a 
Gaussian function is employed: 

 

𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = 0.1 ∙ 𝑒𝑒𝑒𝑒−�(𝑦𝑦𝑦𝑦/0.5)2+�(𝑧𝑧𝑧𝑧−0.6)/0.2�2� 
 

The air conductivity in the model is set to 𝜎𝜎𝜎𝜎0 =
0.01, whereas at the lower boundary of the 
computational domain the value 𝜎𝜎𝜎𝜎𝐻𝐻𝐻𝐻 = 0.1 is used. 
The magnetic permeability of the medium is assumed 
to be constant throughout the entire domain and is 
taken as 𝑖𝑖𝑖𝑖 = 0.08𝜋𝜋𝜋𝜋. 

In Figure 2a, the real part of the field, 
𝑎𝑎𝑎𝑎)𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒�𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)�, exhibits smooth spatial variations: 
the values reach their maximum in the central part of 
the domain and gradually decrease toward the 
boundaries. This distribution reflects the influence of 
the central conductive anomaly and the symmetry of 
the geoelectrical structure with respect to the 𝑦𝑦𝑦𝑦-axis. 

In Figure 2b, the real part of the impedance, 
𝑏𝑏𝑏𝑏)𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒�𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖)�, shows a pronounced maximum in 
the central zone (near 𝑦𝑦𝑦𝑦 = 0) and decreases toward 
the edges (𝑦𝑦𝑦𝑦 = ±1). As the frequency increases, an 
overall reduction of 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒�𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖)�, is observed, 
which corresponds to the shallower penetration depth 
of the electromagnetic field and the reduced 
contribution of deep conductive structures. 

Both presented quantities – 𝑎𝑎𝑎𝑎)𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒�𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)�, and 
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒�𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖)� – behave consistently and serve as the 
basis for further impedance analysis and 
reconstruction of the medium structure. The 
imaginary parts of the field and impedance are not 
considered in this section, since the focus is placed 
on amplitude (energy) characteristics; their analysis 
is beyond the scope of the current illustration.

 
 

  
𝑎𝑎𝑎𝑎)𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒�𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)� 𝑏𝑏𝑏𝑏)𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒�𝑍𝑍𝑍𝑍0(𝑦𝑦𝑦𝑦,𝑖𝑖𝑖𝑖)� 

 
Figure 2 – Numerical solution of the direct problem with the specified model parameters:  

a) distribution of the electromagnetic field u(y, z); b) impedance response 
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Figure 3 presents the results of the numerical 
solution of the two-dimensional inverse 
magnetotelluric sounding problem obtained using the 
Landweber method. The exact conductivity 
distribution 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) (Figure 3a) is compared with 
the approximate solution 𝜎𝜎𝜎𝜎𝑛𝑛𝑛𝑛(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) (Figure 3b), 
computed after a finite number of iterations. 

The exact distribution is characterized by a 
smooth and symmetric structure with a maximum at 

the center and gradual decay toward the boundaries 
of the domain. The reconstructed solution generally 
reproduces the shape of the original model: the 
central maximum coincides in position, and the main 
contours of the anomaly are preserved. The largest 
discrepancies between the exact and approximate 
solutions are observed in the peripheral regions, 
which can be explained by the higher sensitivity to 
data errors and iterative inaccuracies.

 
 

  
𝑎𝑎𝑎𝑎)𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) в 2D 𝑏𝑏𝑏𝑏)𝜎𝜎𝜎𝜎𝑛𝑛𝑛𝑛(𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) в 2D 

 
Figure 3 – Graphical comparison of the exact and reconstructed conductivity 

 
 
Figure 4 illustrates the results of the numerical 

solution of the inverse magnetotelluric sounding 
problem obtained with the Landweber method.  
 

Shown are the convergence curves of the functional 
𝒥𝒥𝒥𝒥(𝑘𝑘𝑘𝑘), which exhibit a monotonic decrease 
throughout the iterative process. 

 
 

Figure 4 – Graph of the functional decrease using the Landweber method 
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As a test case, an exponential function was 
employed, whose reconstruction is traditionally 
considered challenging in inverse problems. Future 
work will focus on applying the methodology to real 
field data and on extending the approach to more 
complex types of anomalies. The present study is 
primarily aimed at demonstrating the methodological 
framework for solving inverse problems in 
magnetotelluric sounding. 

It should be noted that in the present study the 
numerical experiments were performed using 
synthetic data without the addition of artificial 
noise. Even in this case, the results demonstrate 
that the Landweber method does not provide a 
complete reconstruction of the conductivity 
coefficient and leads to a smoothing of the 
solution, especially in the peripheral regions of the 
computational domain. Such behavior is typical for 
gradient-based iterative methods when solving ill-
posed coefficient inverse problems and reflects 
their regularizing nature. 

In this regard, the additional introduction of noise 
into the input data is not fundamentally necessary to 
reveal the limitations of the method, since the main 
effects related to stability and incomplete 
reconstruction already appear for idealized data. The 
present work is focused on demonstrating the 
methodological framework for solving the two-
dimensional coefficient inverse problem of 
magnetotelluric sounding and on analyzing the 
behavior of the Landweber algorithm. A more 
detailed investigation of the influence of 
measurement noise, regularization parameters, and 
stopping criteria is planned for future studies. 

 
Conclusion 
 
This study addressed the two-dimensional 

inverse problem of magnetotelluric sounding. The 
work is of a review-applied nature and was aimed at 
developing a direct numerical model of the 

electromagnetic response of a geoelectrical medium. 
The modeling framework is based on the Helmholtz 
equation with a complex coefficient, in which 
conductivity varies both with depth and along the 
transverse coordinate. 

A synthetic model was designed for the 
numerical experiments, consisting of a smooth 
background conductivity and a localized anomaly. 
Simulations of the electromagnetic field and surface 
impedance revealed the strong sensitivity of the 
response to subsurface heterogeneities. The observed 
field symmetry and the occurrence of local maxima 
in the impedance distribution validate the correctness 
of the implemented algorithm. 

The inverse problem of reconstructing the 
conductivity distribution from synthetic data was also 
examined. The numerical results demonstrated that 
even with limited information, a high level of 
reconstruction accuracy can be achieved. The misfit 
functional attained its minimum after a relatively 
small number of iterations, and the approximate 
solution closely matched the original model. 

Overall, the findings confirm that the proposed 
numerical scheme and inversion algorithm are 
effective both for direct modeling and for the stable 
solution of inverse magnetotelluric sounding 
problems, highlighting their potential as practical 
tools for geophysical interpretation. Quantitative 
error analysis and comparison with alternative 
inversion methods will be the subject of future work. 
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