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On the inverse problem of identifying the source term 
in a pseudoparabolic equation  

with a final time overdetermination condition

Abstract. In this paper, we consider the inverse problem for a linear pseudoparabolic equation describing 
the temperature distribution taking into account external forces that depend only on the spatial variable. 
The classical solution to the inverse problem under consideration satisfies the usual pseudoparabolic 
equation, initial and nonlocal boundary conditions, and a final additional condition. The issues of existence 
and uniqueness of the solution to the inverse problem are the subject of study in the work presented by 
the author. As the main result, theorems on the existence and uniqueness of the classical solution to the 
problem under study are formulated and rigorously proven. These theorems are completely proven in a 
mathematically rigorous language using the method of separation of variables. In the course of the proof, 
a system of orthogonal and biorthogonal basis functions of a special type was chosen in accordance with 
the nonlocal boundary conditions. First of all, to prove the theorem on the existence of a solution, an 
analytical formula for the solution was derived in the form of a series in the system of these functions, 
their uniform convergence was analyzed according to the Weierstrass theorem, and the convergence to the 
classical solution of the inverse problem under consideration was investigated. The proof of the theorem on 
uniqueness was carried out by the method of the opposite assumption. 
Keywords: inverse problem, pseudoparabolic equation, existence of solution, uniqueness of solution, 
nonlocal boundary condition.

Introduction 

In this paper, we study the inverse problem for a 
linear pseudoparabolic equation that includes an 
additional term accounting for the effect of external 
forces depending only on the spatial variable, with 
the goal of determining the temperature. The 
classical solution of this inverse problem satisfies 
the standard pseudoparabolic equation, along with 
the initial and nonlocal boundary conditions, as well 
as the final additional condition. The primary 
objective of this work is to prove the existence, 
uniqueness and stability of the solution to the 
inverse problem. 

The nonlocal boundary conditions considered in 
the present study were first introduced in the work 
of N.I. Ionkin [1]. Later, A.A. Samarskii [2] 
investigated the formulation of differential 
equations with nonstandard boundary conditions. In 
accordance with these works, boundary value 
problems with the nonlocal boundary condition (3) 

became known as the Ionkin–Samarskii problem. 
However, historically, problems with nonlocal 
boundary conditions can be traced back to the work 
of V.A. Steklov [3]. 

In general, pseudoparabolic equations are 
employed to describe important physical processes 
such as hydrodynamics, filtration theory, continuum 
mechanics, heat conduction in two-temperature 
systems, dispersive flows, viscous flows in materials 
with memory, and others. As an example, one may 
mention the Kelvin–Voigt (Navier–Stokes–Voigt) 
system of equations. The formulation of equation 
(1) from physical laws and its mathematical
modeling can be found in the works [4-8].

There are very few studies devoted to the 
inverse problem of determining the right-hand side 
of a given equation that depends on the spatial 
variable, or of reconstructing the right-hand side 
itself. Under suitable assumptions on the given data, 
authors prove existence and uniqueness of a 
classical solution ),( fu  to the corresponding 
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inverse problem [9]. The authors of [10] 
successfully obtained a stable and precise 
reconstruction of the unknown spatial source term 
using a combination of finite-difference methods 
and Tikhonov regularization. Theoretical 
guarantees: existence, uniqueness and stability of 
solution, and numerical solution (B‑spline + 
Tikhonov regularization + nonlinear least-squares) 
are established by Huntul M.J., Khompysh Kh., 
Shazyndayeva M.K., Iqbal M.K. [11]. In [12], the 
authors demonstrated both theoretically and 
numerically the existence of solutions using 
fractional Landweber iterative regularization. 
Author [13] have studied existence and uniqueness 
of a classical solution to appropriate inverse 
problems, under suitable assumptions on the 
initial/boundary data. See also [16] and the 
references therein. 

In this work, the research methodology is purely 
theoretical. The main objective is to establish the 
existence, uniqueness and stability of a classical 
solution to the inverse problem (1)–(4). The main 
tool is the Fourier method in combination with 
orthogonal and biorthogonal systems of functions 
adapted to the nonlocal boundary conditions. The 
proof of existence relies on the derivation of an 
analytical formula for the solution in the form of 
uniformly convergent series, justified by the 
Weierstrass theorem. The proof of uniqueness is 
based on the method of contradiction. 

Materials and Methods 

In this section, we present the formulation of the 
inverse problem together with the methods used for 
its analysis. 

Problem statement. Let us consider the inverse 
problem of determining the pair of functions 
( ( , ), ( ))u x t f x  in the rectangle 

{( , ) : (0,1), (0, ), }TQ x t x t T T= ∈ ∈ < ∞ . The 
inverse problem is to find ( , )u x t and ( )f x
satisfying the pseudoparabolic equation 

( ), ( , )t xx xxt Tu u u f x x t Q− − = ∈  (1) 

the initial condition 

( )( ,0) , [0,1]u x x xϕ= ∈      (2) 

the non-local periodic boundary conditions 

(1, ) 0,
(0, ) (1, ), [0, ],x x

u t
u t u t t T

=

= ∈
 (3) 

and the additional final overdetermination condition 

( , ) ( ), [0,1],u x T x xψ= ∈            (4) 

where ( )xϕ and ( )xψ are given functions, whereas 
( )f x and ( , )u x t  are the unknowns to be 

determined.  

Results and Discussion 

Firstly, let’s give the definition of a solution to 
the inverse problem (1)–(4). 

Definition 1. A solution of the inverse problem 
(1)–(4) is defined as a pair of functions 
( ( , ), ( ))u x t f x  belonging respectively to the spaces 

( )2,1 1,0
, ,( )x t T x t TC Q C Q∩  and C([0,1]) , which satisfy 

the pseudoparabolic equation (1) in the rectangle 

TQ , the initial condition (2) and the final condition 
(4) on the interval [0,1] , as well as the boundary
condition (3) on the interval [0, ]T .

Existence of the solution. In this section, the 
existence of a solution to the inverse problem (1)–
(4) is established, and the following result is
obtained.

Theorem 1. Let 4( ), ( ) ([0,1])x x Cϕ ψ ∈  be 
functions satisfying the compatibility conditions  

(1) 0, (1) (0),ϕ ϕ ϕ′ ′= =           (5)  

(1) 0, (0) (1),ψ ψ ψ′ ′= =            (6) 

(0) (1), (0) (1)ϕ ϕ ψ ψ′′ ′′ ′′ ′′= =          (7) 

(0) (1), (0) (1)ϕ ϕ ψ ψ′′′ ′′′ ′′′ ′′′= =         (8) 

Then there exists a classical solution 
( ( , ), ( ))u x t f x , belonging respectively to the spaces 

2,1
, ( )x t TC Q  and C([0,1]) , of the inverse problem 

(1)–(4). 
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Proof. The proof of Theorem 1 is based on the 
Fourier method. 

We seek the solution of the inverse problem (1)–
(4) by expanding in series with respect to the special
system of basis functions 

1

1

2(1 ), {4(1 )cos 2 } ,

{4sin 2 }
n

n

x x nx
nx

π

π

∞
=

∞
=

− −
  (9) 

The system (9) was studied in [14,15] and 
shown to be complete in L2(0,1) and to form a Riesz 
basis. However, the system (9) is not orthogonal; for 

it the following biorthogonal system was given in 
[15] 

1 11, {cos 2 } , { sin 2 } .n nnx x nxπ π∞ ∞
= =        (10) 

The system (10) is used both to prove the 
uniqueness of the solution of the inverse problem 
(1)–(4) and to determine the Fourier coefficients that 
appear when the solution is expanded with respect 
to the system (9). Hence, the solution pair ( , )u x t
and ( )f x  of the inverse problem (1)–(4) can be 
written in the series form 

0 1 2
1 1

( , ) 2 ( )(1 ) 4 ( )(1 )cos 2 4 ( )sin 2n n
n n

u x t u t x u t x nx u t nxπ π
∞ ∞

= =

= − + − +∑ ∑                 (11) 

0 1 2
1 1

( ) 2 (1 ) 4 (1 )cos 2 4 sin 2n n
n n

f x f x f x nx f nxπ π
∞ ∞

= =

= − + − +∑ ∑                               (12) 

where 0 1 2( ), ( ), ( )n nu t u t u t  and the constants f0, f1n,
f2n are the unknown Fourier coefficients. Formally 
assuming that the series for u(x,t) and f(x) can be 
differentiated termwise, we substitute these series 

into equation (1). 
Note that differentiating the series (11)–(12) 

termwise yields the following expressions for 
( )( , ), ,t xxu x t u x t  and ( ),xxtu x t

0 1 2
1 1

( , ) 2 ( )(1 ) 4 ( )(1 )cos 2 4 ( )sin 2 ,t n n
n n

u x t u t x u t x nx u t nxπ π
∞ ∞

= =

′ ′ ′= − + − +∑ ∑                    (13) 

( ) ( )2 2 2 2
1 2

1 1
( , ) 4 ( ) 4 sin 2 4 (1 )cos 2 4 ( ) 4 sin 2 ,xx n n

n n
u x t u t n nx n x nx u t n nxπ π π π π π

∞ ∞

= =

= − − + −∑ ∑     (14) 

( ) ( )2 2 2 2
1 2

1 1
( , ) 4 ( ) 4 sin 2 4 (1 )cos 2 4 ( ) 4 sin 2 .xxt n n

n n
u x t u t n nx n x nx u t n nxπ π π π π π

∞ ∞

= =

′ ′= − − + −∑ ∑    (15)  

Plugging (13)–(15) into (1) yields 

( )

( ) ( )

2 2
0 1

1

2 2 2 2
1 2

1 1

2 2
2 0 1

1 1 1

2 ( )(1 ) 4 ( ) (1 )cos 2 4 sin 2 4 (1 )cos 2

4 ( ) 4 sin 2 4 (1 )cos 2 4 ( ) 1 4 sin 2

16 ( )sin 2 2 (1 ) 4 (1 )cos 2 4

n
n

n n
n n

n n
n n n

u t x u t x nx n nx n x nx

u t n nx n x nx u t n nx

n u t nx f x f x nx

π π π π π

π π π π π π

π π π

∞

=

∞ ∞

= =

∞ ∞ ∞

= = =

′ ′− + − − − − −

′− − − + + +

+ = − + − +

∑

∑ ∑

∑ ∑ 2 sin 2nf nxπ∑

       (16)
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Also, imposing the initial and final conditions 
(2) and (4) on the expansions (11) and (12) yields
the relations

0 0 1 1 2 2(0) ; (0) ; (0) ;n n n nu u uϕ ϕ ϕ= = =      (17) 

0 0 1 1 2 2( ) ; ( ) ; ( ) .n n n nu T u T u Tψ ψ ψ= = =     (18) 

where 0 1 2, ,n nϕ ϕ ϕ  and 10 2, ,n nψ ψ ψ are, respecti-
vely, the Fourier coefficients of ( )xϕ and ( )xψ  
with respect to the system (10). They are given by 

1

0 0
1

1 0
1

2 0

( ) ,

( ) cos 2 ,

( ) sin 2 ,

n

n

x dx

x nxdx

x x nxdx

ϕ ϕ

ϕ ϕ π

ϕ ϕ π

=

=

=

∫
∫
∫

      (19) 

1

0 0
1

1 0
1

2 0

( ) ,

( ) cos 2 ,

( ) sin 2 .

n

n

x dx

x nxdx

x x nxdx

ψ ψ

ψ ψ π

ψ ψ π

=

=

=

∫
∫
∫

 (20) 

Thus, from equation (16) and the conditions 
(17), (18) we obtain the following systems of 
ordinary differential equations for the unknown 
coefficient functions 0 1 2( ), ( ), ( )n nu t u t u t  and the

constants 0 1 2, ,n nf f f

0

0

0

0 0 0(0
(

) ;
t ) =

( ) .
,u f

u u Tϕ ψ
′

= =




 (21) 

2 2
1

1 12 2 2 2

1 1 1 1

4( ) ( ) ,
1 4 1 4

(0) ; ( ) .

n
n n

n n n n

fnu t u t
n n

u u T

π
π π

ϕ ψ

′ + =
+ +

= =






  (22) 

2 2
2

2 2 1 12 2 2 2 2 2 2 2

2 2 2 2

4 4 4( ) ( ) ( ) ( ),
1 4 1 4 1 4 1 4

(0) ; ( ) .

n
n n n n

n n n n

fn n nu t u t u t u t
n n n n

u u T

π π π
π π π π

ϕ ψ

′ ′+ = + +
+ + + +

= =






         (23) 

Note that the solution of problem (23) can be 
found only after solving (22). 

Firstly, the solution of (21) is 

0 0
0 0

0 0
0

( ) ,

;

u t t
T

f
T

ψ ϕ ϕ

ψ ϕ

−
= +

−
=

     (24) 

The solution of (22) is obtained explicitly as 

2 2

2 2

2 2

2 2

2 2

2 2

4
1 1 1 4

1 14
1 4

2 2 1 1
1 1 4

1 4

( ) 1 ,
1

4
1

n t
n n n

n nn T
n

n n
n n n T

n

u t e
e

f n
e

π
π

π
π

π
π

ψ ϕ ϕ

ψ ϕπ ϕ

−
+

−
+

−
+

 −
 = − +
 
 −

 
− = −  − 

 (25) 

Finally, the solution of (23) can be written in the 
form 

( )

2 2 2 2

2 2 2 2

2 2

2 2

4 4
1 4 1 4

2 2 2 2 2 2

2 2 1 1
2 2 2 1 4

1 4

4( ) 1 ,
(1 4 )

4
1

n nt t
n n

n n n

n n
n n n n n T

n

nu t C e te
n

f n C n
e

π π
π π

π
π

πϕ
π

ψ ϕπ ϕ π ϕ

− −
+ +

−
+

 
 = + − +
  + 

 
− = − − −  − 

(26)
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where 
2 2

2 2

2 2

2 2

4
1 4

2 2 2 2 2 24
1 4

1 4 .
(1 4 )

1

n T
n

n n nn T
n

nC Te
n

e

π
π

π
π

πψ ϕ
π

−
+

−
+

 
 = − −
 + −

 (27) 

Now, substituting the functions 

0 1 2( ), ( ), ( )n nu t u t u t , defined by (24)1, (25)1, (26)1

into expression (11), and the numbers f0, f1n, f2, 

defined by (24)2, (25)2, (26)2 into expression (12), 
we obtain the following functions ( , )u x t
and ( )f x

2 2

2 2

2 2

2 2

2 2 2 2

2 2 2 2

4
0 0 1 1 1 4

14
1

1 4

4 4
1 4 1 4

2 2 2 2 2
1

( , ) ( ) 2 (1 ) 4 1 (1 )cos 2

1

44 1 sin 2
(1 4 )

n t
n n n

nn Tn
n

n nt t
n n

n n
n

u x t x t x e x nx
T

e

nC e te nx
n

π
π

π
π

π π
π π

ψ ϕ ψ ϕ
ϕ ϕ π

πϕ π
π

∞ −
+

−=
+

∞ − −
+ +

=

  − −  = + − + − + − +    − 
  
  + + − +

  +  

∑

∑

      (28) 

( )

2 2

2 2

2 2

2 2

2 20 0 1 1
1 4

1
1 4

2 2 1 1
2 2 1 4

1
1 4

( ) 2 (1 ) 4 (1 )cos 2

1

4 4 sin 2 .

1

n n
n n Tn

n

n n
n n n n Tn

n

f x x n x nx
T

e

n C n nx

e

π
π

π
π

ψ ϕ ψ ϕ
π ϕ π

ψ ϕ
π ϕ π ϕ π

∞

−=
+

∞

−=
+

 
− − = − + − − +  − 

 
− + − − −  − 

∑

∑

     (29) 

Now, we show that the solutions (28), (29) 
satisfy equation (1). For this purpose, substituting 
expressions (19)–(20) into the series (28), (29), and 

applying the formula of integration by parts together 
with the compatibility conditions (5)–(8), we can 
rewrite them as follows: 

2 2

2 2

2 2

2 2

2 2
2 22 2

2

2 2

2 2

4(4) (4)
0 0 1 1 1 4

4 4 4
1 1 4

4
4(4) (4)1 4

1 1 1 4
3 3 2 2 2 5 5 4

1 1 4

1( , ) ( ) 2 (1 ) 1 (1 )cos 2
4

1

1
(1 ) 2

1

n t
n n n

n Tn n

n T nn
n n n

n Tn n

u x t x t x e x nx
T n

e

Te e
n n n

e

π
π

π
π

π
ππ
π

π
π

ψ ϕ ψ ϕϕ π
π

ψ ϕ
π π π

∞ −
+

−=
+

−
∞ + −

+

−=
+

 − −
 = + − + − − −
 
 −

 
− 

+ + +  − 

∑

∑

( )

2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

4(4) (4)
2 2 1 4

4 4 4
1 1 4

4(4) (4)
1 1 1 4

2 43 3 2 21 1 4

1 sin 2

1 1 sin 2
4

1

1 sin 2
1 4 1

t

n t
n n n

n Tn n

n t
n n n

n Tn n

nx

e nx
n

e

te nx
n n e

π
π

π
π

π
π

π
π

π

ψ ϕ π
π

ψ ϕ π
π π

∞ −
+

−=
+

∞ −
+

−=
+

 
 − −
 
 

 −
 + − +
 
 −

−
+

+ −

∑

∑

(30)
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2 2

2 2

2 2

2 2

2 2

2 2

(4) (4)
2 20 0 1 1

1 4 4 4
1 1 4

4
(4) (4)1 4

2 2 1 1
2 3 3 2 2 2 5 5 4

1 1 4

1( ) 2 (1 ) 4 (1 )cos 2
16

1

116 sin 2
4 (1 ) 8

1

n n
n n Tn n

n T
n

n n
n n Tn n

f x x n x nx
T n

e

Ten
n n n

e

π
π

π
π

π
π

ψ ϕ ψ ϕπ ϕ π
π

ψ ϕπ ϕ π
π π π

∞

−=
+

−
∞ +

−=
+

 
− − = − + − − +  − 

  
 − 

+ − +  +   −  

∑

∑

2 2 2 2

2 2 2 2

(4) (4) (4) (4)
2 2 1 1

12 2 4 44 4
1 11 4 1 4

1 1sin 2 16 sin 2 .
16 16

1 1

n n n n
nn nT Tn nn n

nx

nx n nx
n n

e e
π π
π π

ψ ϕ ψ ϕπ π ϕ π
π π

∞ ∞

− −= =
+ +

+

 
− − + − −  − − 

∑ ∑

 (31) 

where, the numbers (4) (4)
1 2,n nϕ ϕ  and (4) (4)

1 2,n nψ ψ  are, 
respectively, the Fourier coefficients obtained from 
the Fourier series expansion of the functions 

( )IV xϕ  and ( )IV xψ . According to the condition of 

Theorem 1, since the functions ( )IV xϕ  and ( )IV xψ  
are continuous on the interval [0,1] , and by 
Bessel’s inequality for trigonometric series, the 
convergence of the following series is deduced: 

2
(4) 2 2

(0,1)
1
| | ( ) , 1, 2,IV

in L
n

C x iϕ ϕ
∞

=

≤ =∑ ‖ ‖    (32) 

2
(4) 2 2

(0,1)
1
| | ( ) , 1, 2.IV

in L
n

C x iψ ψ
∞

=

≤ =∑ ‖ ‖    (33) 

From expressions (32), (33), it follows that the 
set { }(4) (4) (4) (4)

1 2 1 2, , , , 1, 2,n n n n nϕ ϕ ψ ψ = …  is bounded. 
Moreover, the derivatives of the function ( , )u x t  
required in equation (1) are represented, according 
to series (28), in the following form: 

2 2

2 2

2 2

2 2

2 2
2 22 2

2 2

2 2

2 2

4(4) (4)
0 0 1 1 1 4

2 2 2 2 4
1 1 4

4
4(4) (4)1 4

1 1 1 4
2 2 2 2 2 3 3 4

1 1 4

1( , ) 2 (1 ) (1 )cos 2
(1 4 )

1

1 4 2
1 4 (1 )

1

n t
n n n

t n Tn n

n T nn
n n n

n Tn n

u x t x e x nx
T n n

e

Te e
n n n n

e

π
π

π
π

π
ππ
π

π
π

ψ ϕ ψ ϕ π
π π

ψ ϕ
π π π π

∞ −
+

−=
+

−
∞ + −

+

−=
+

− −
= − − − −

+
−

 
− 

− + + +  − 

∑

∑

( )

( )

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

4(4) (4)
2 2 1 4

2 2 2 2 4
1 1 4

4(4) (4)
1 1 1 4

2 43 3 2 21 1 4

(4) (4)
1 1

3 42 21 1 4

sin 2

1 sin 2
(1 4 )

1

1 sin 2
1 4 1

4

1 4

t

n t
n n n

n Tn n

n t
n n n

n Tn n

n n
n Tn n

nx

e nx
n n

e

e nx
n n e

n n e

π
π

π
π

π
π

π
π

π
π

π

ψ ϕ π
π π

ψ ϕ π
π π

ψ ϕ

π π

∞ −
+

−=
+

∞ −
+

−=
+

∞

−=
+

−

−
− +

+
−

−
+ −

+ −

−
−

+ −

∑

∑

∑
2 2

2 2
4

1 4 sin 2 ,
1

n t
nte nx

π
π π

−
+

(34)
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2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

4(4) (4)
1 1 1 4

2 2 4
1 1 4
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t
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(35) 
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Now, let’s prove the uniform convergence of the 
series (30)–(36). Estimating them term by term in 

absolute value, we derive the following majorant 
series: 

(4) (4) (4) (4) (4) (4) (4) (4)
1 1 1 1 1 1 2 2

1 7 5 4
1 1 1

( , ) , ( , )

| | | | | | | | | | | | | | | |( ) ,

t

n n n n n n n n

n n n

u x t u x t

M T
n n n

ϕ ψ ϕ ψ ϕ ψ ϕ ψ∞ ∞ ∞

= = =

≤

 + + + + +
+ + 

 
∑ ∑ ∑

 (37)



82 On the inverse problem of identifying the source term in a pseudoparabolic equation ...

(4) (4) (4) (4) (4) (4) (4) (4)
1 1 1 1 1 1 2 2

2 5 3 2
1 1 1

( ) , ( , ) , ( , )

| | | | | | | | | | | | | | | |( )

xx xxt

n n n n n n n n

n n n

f x u x t u x t

M T
n n n

ϕ ψ ϕ ψ ϕ ψ ϕ ψ∞ ∞ ∞

= = =

≤

 + + + + +
+ + 

 
∑ ∑ ∑

    (38) 

where ( ), 1, 2iM T i =  are positive constants. 
Since the numerical series (37) and (38) converge 
by comparison, together with (32) and (33), the 
uniform convergence of the functional series (30)-
(36) on the closed domain TQ  follows from 
Weierstrass’s theorem. Therefore, the functions 

( , ), ( ), ( , ),) (( , ,, )xxt xxtu x t f x u x t ut xx tu , being
constructed from uniformly convergent series of 
continuous functions, are continuous on TQ . The 
proof of Theorem 1 is complete. 

Uniqueness of the Solution 
Theorem 2. Suppose that the conditions of 

Theorem 1 on the existence of a solution to the 
inverse problem (1)−(4) hold. Then the solution to 
the inverse problem (1)−(4) is unique. 

Proof. Assume, by contradiction, that 
1 1( ( , ), ( ))u x t f x  and 2 2( ( , ), ( ))u x t f x  are two 

solutions of the inverse problem (1)−(4). Let 
1 2( , ) ( , ) ( , )V x t u x t u x t= −  and 

1 2( ) ( ) ( ),F x f x f x= −  then the functions ( , )V x t  
and ( )F x  satisfy the following problem 

( , ) ( , ) ( , ) ( ), ( , )
( ,0) 0, [0,1]
(1, ) 0, (0, ) (1, ), [0, ]
( , ) 0, [0,1]

t xx xxt T

x x

V x t V x t V x t F x x t Q
V x x
V t V t V t t T
V x T x

− − = ∈
= ∈
= =




∈
=



∈






 (39) 

The solution of the initial–boundary value 
problem (39) can be written, using the system of 
functions (10), in the form of the series  

0 1
1

2
1

( , ) ( ) ( ) 2

( ) 2 ,

n
n

n
n

V x t V t V t cos nx

V t xsin nx

π

π

∞

=

∞

=

= + +∑

∑
   (40) 

0 1
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( ) 2

2 .

n
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n
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F x F F cos nx

F xsin nx

π

π

∞

=

∞

=

= + +

+

∑

∑
  (41) 

where ( )0 1 2( ), ( ),n nV t V t V t  and 0 1 2, ,n nF F F  are the 
Fourier coefficients of ( , )V x t  and ( )F x , 
respectively, with respect to the basis system (10). 
They satisfy the following boundary value problems 
for ordinary differential equations: 

0

0

0

0

( ) ,
(0) 0; ( ) 0.

V t F
V V T
′ =

= =


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    (42) 

2 2
2
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(0) 0; ( ) 0.

n
n n n n
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Fn n nV t V t V t V t
n n n n

V V T

π π π
π π π π
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It is easy to see that the solutions of problems 
(42), (43) and (44) are 0 ,( ) 0V T =

0 1 2( ) 0, ( ) 0, ( ) 0n nV t V t V t= = = and 0 0,F =

1 0,nF = 2 0nF = . Hence, ( ), 0V x t =  and

( ) 0F x = . Therefore, 1 2( , ) ( , )u x t u x t=  and
1 2( ) ( )f x f x= . Thus, the solution of the inverse 

problem (1)−(4) is unique. This completes the proof 
of Theorem 2. 

Example 1 (Stationary example). Consider the 
functions 

2( , ) sin 2 , ( ) 4 sin 2 ,
( ) sin 2 , ( ) sin 2

u x t x f x x
x x x x

π π π
ϕ π ψ π

= =
= =

This example satisfies all equalities and 
constitutes an explicit solution of the problem (1) – 
(8). 

Example 2 (Non-stationary example). Let’s 
consider the functions  

2

2
(2 )

1 (2 )
02 2

0

( , )

sin 2 ,
(2 ) (2 )

( ) sin 2 , ( ) sin 2 ,
( ) ( )sin 2 .

t

u x t

C CA e x

f x C x x A x
x A T x

π
π π

π π

π ϕ π
ψ π

−
+

=

   = + −    
= =

=

where constC = , 0 : (0)A A= and 
2

2
(2 )

1 (2 )
02 2( ) .

(2 ) (2 )

tC CA t A e
π
π

π π

−
+ 

= + − 
 

Both examples confirm that the conditions of 
Theorem 1 are satisfied and provide explicit 
solutions of the inverse problem. 

Noting that the investigations in this work are of 
a theoretical nature, the authors obtained two 
theorems as the main results. The first theorem 
establishes the existence of a solution to the inverse 
problem for a linear pseudoparabolic equation, 
while the second theorem proves the uniqueness of 

its classical solution. The obtained results were 
discussed and approved among young researchers 
and scientific staff of the Laboratory of Differential 
Equations and Control Theory of the Faculty of 
Mechanics and Mathematics at Al-Farabi Kazakh 
National University. 

Discussion 

The main object of study in this article is the 
inverse problem posed for a linear pseudoparabolic 
equation. Two principal difficulties can be 
highlighted in this problem: first, the imposition of 
nonlocal boundary conditions, and second, the 
determination of the right-hand side depending on 
the spatial variable. In the case of nonlinear 
equations, the determination of the right-hand side 
depending on the spatial variable, or of its 
coefficient, becomes even more challenging. In 
fact, research in this direction is almost 
nonexistent. Therefore, the conclusions obtained in 
this article regarding the determination of the right-
hand side depending on the spatial variable 
represent valuable results. Consequently, the 
findings presented in this work will be useful for 
further studies on numerical solutions and practical 
applications. 

Conclusion 

This work considered the inverse problem for a 
linear pseudoparabolic equation with an additional 
term representing the effect of external forces 
depending only on the spatial variable, together with 
the determination of temperature. The study 
presented the definition of a classical solution. By 
means of biorthogonal and orthogonal systems, 
theorems on the existence, uniqueness and stability 
of the classical solution to the inverse problem were 
formulated and rigorously proven in a 
mathematically precise and clear manner. 
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